Laser & Optoelectronics Progress, Volume. 61, Issue 22, 2237004(2024)

Hyperspectral Image Classification Using Dual-Branch Residual Networks

Tianjiao Du1,3、**, Yongsheng Zhang2,3、*, and Lidong Bao1,3
Author Affiliations
  • 1School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • 2School of Artificial Intelligence, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • 3Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, Guangdong , China
  • show less
    Figures & Tables(12)
    Data augmentation diagram
    Structure diagram of the two-branch residual network
    Structural diagram of spectral residual block and spatial residual block. (a) Spectral residual block; (b) spatial residual block
    Channel attention mechanism
    Spatial attention mechanism
    Classification results of IP dataset. (a) Pseudo-color image; (b) true class; (c) DSSRN; (d) ACSS-GCN; (e) HybridSN; (f) CDC-MDAA; (g) SpectralNET; (h) Tri_CNN
    Classification results of PU dataset. (a) Pseudo-color image; (b) true class; (c) DSSRN; (d) ACSS-GCN; (e) HybridSN; (f) CDC-MDAA; (g) SpectralNET; (h) Tri_CNN
    Classification results of KSC dataset. (a) Pseudo-color image; (b) true class; (c) DSSRN; (d) ACSS-GCN; (e) HybridSN; (f) CDC-MDAA; (g) SpectralNET; (h) Tri_CNN
    • Table 1. Information on IP, PU,and KSC datasets

      View table

      Table 1. Information on IP, PU,and KSC datasets

      DatasetSize /(pixel×pixel)Spatial resolution /mBandWavelength coverage /nmKind
      IP145×14520.0200400‒240016
      PU610×3401.3103430‒8609
      KSC512×61418.0176400‒250013
    • Table 2. Classification results for IP dataset

      View table

      Table 2. Classification results for IP dataset

      ClassDSSRNACSS-GCNHybridSNCDC-MDAASpectralNETTri_CNN
      1100.00100.0094.4497.5376.36100.00
      295.5792.8195.38100.0097.5941.83
      399.7893.0287.0999.4398.5442.50
      497.1997.9782.3596.6497.1642.59
      596.4695.0393.7295.0395.0499.28
      697.5398.8793.8699.2399.8464.30
      7100.00100.0086.3799.4583.820
      899.23100.0099.7682.63100.0082.69
      9100.0076.1954.8499.7451.430
      1096.8398.6096.3897.3197.9367.28
      1198.2593.0195.6997.3897.7654.77
      1298.6396.1982.9598.0596.8994.66
      1397.8496.6199.4098.7097.13100.00
      1499.3697.3997.8298.4296.4782.33
      1597.1296.7296.4187.1897.3582.93
      1695.5484.5496.3092.6398.48100.00
      OA97.1895.2493.9995.7496.9360.88
      AA95.3193.1289.8194.8294.8037.55
      Kappa96.4394.5694.4495.8796.5053.91
    • Table 3. Classification results for PU dataset

      View table

      Table 3. Classification results for PU dataset

      ClassDSSRNACSS-GCNHybridSNCDC-MDAASpectralNETTri_CNN
      1100.0099.3398.91100.0099.1798.89
      299.6499.9699.8699.48100.0095.64
      3100.0099.30100.00100.00100.0082.93
      499.2497.9098.70100.0099.6298.33
      5100.00100.0099.83100.00100.0098.74
      6100.00100.0098.97100.00100.0099.88
      799.8399.1798.7599.3999.0995.76
      899.7798.0396.6499.8699.5181.72
      999.3599.2699.2599.6599.1486.53
      OA99.7599.4899.3099.6499.6994.55
      AA99.4498.7798.2199.2899.3493.45
      Kappa99.7199.3199.0799.5399.5992.74
    • Table 4. Classification results for the KSC dataset

      View table

      Table 4. Classification results for the KSC dataset

      ClassDSSRNACSS-GCNHybridSNCDC-MDAASpectralNETTri_CNN
      189.7781.6594.0694.2787.6562.30
      298.4267.3590.7090.9389.7441.67
      395.7869.6283.9890.2784.3631.82
      496.8359.7381.2165.0636.7942.86
      5100.0067.9286.0696.83100.0019.69
      694.6479.8384.8690.5471.8714.52
      7100.0090.6384.91100.00100.0076.56
      899.8170.8585.6896.0493.6743.20
      998.6695.9284.4296.7490.6356.27
      10100.0053.8691.6798.7692.8325.61
      11100.00100.0098.9295.8390.6771.10
      12100.0063.8279.0680.9492.8844.91
      13100.0079.9598.3599.8989.7194.03
      OA97.1676.3189.6493.7583.9553.83
      AA95.3976.3189.8092.8477.8544.83
      Kappa96.8368.7587.7893.3982.0948.57
    Tools

    Get Citation

    Copy Citation Text

    Tianjiao Du, Yongsheng Zhang, Lidong Bao. Hyperspectral Image Classification Using Dual-Branch Residual Networks[J]. Laser & Optoelectronics Progress, 2024, 61(22): 2237004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Feb. 10, 2024

    Accepted: Mar. 25, 2024

    Published Online: Nov. 20, 2024

    The Author Email: Tianjiao Du (1539971061@qq.com), Yongsheng Zhang (zys@cust.edu.cn)

    DOI:10.3788/LOP240688

    CSTR:32186.14.LOP240688

    Topics