Laser & Optoelectronics Progress, Volume. 61, Issue 22, 2237004(2024)
Hyperspectral Image Classification Using Dual-Branch Residual Networks
Fig. 3. Structural diagram of spectral residual block and spatial residual block. (a) Spectral residual block; (b) spatial residual block
Fig. 6. Classification results of IP dataset. (a) Pseudo-color image; (b) true class; (c) DSSRN; (d) ACSS-GCN; (e) HybridSN; (f) CDC-MDAA; (g) SpectralNET; (h) Tri_CNN
Fig. 7. Classification results of PU dataset. (a) Pseudo-color image; (b) true class; (c) DSSRN; (d) ACSS-GCN; (e) HybridSN; (f) CDC-MDAA; (g) SpectralNET; (h) Tri_CNN
Fig. 8. Classification results of KSC dataset. (a) Pseudo-color image; (b) true class; (c) DSSRN; (d) ACSS-GCN; (e) HybridSN; (f) CDC-MDAA; (g) SpectralNET; (h) Tri_CNN
|
|
|
|
Get Citation
Copy Citation Text
Tianjiao Du, Yongsheng Zhang, Lidong Bao. Hyperspectral Image Classification Using Dual-Branch Residual Networks[J]. Laser & Optoelectronics Progress, 2024, 61(22): 2237004
Category: Digital Image Processing
Received: Feb. 10, 2024
Accepted: Mar. 25, 2024
Published Online: Nov. 20, 2024
The Author Email: Tianjiao Du (1539971061@qq.com), Yongsheng Zhang (zys@cust.edu.cn)
CSTR:32186.14.LOP240688