Chinese Journal of Lasers, Volume. 47, Issue 1, 0102006(2020)

Relation between Plasma Electrical Signal Oscillation and Weld Depth in Laser Deep Penetration Welding

Sai Xu1, Lijun Yang1,2, Shufeng Xu3、*, Yiming Huang1、**, Shengbin Zhao1, and Shanshan Li1
Author Affiliations
  • 1School of Material Science and Engineering, Tianjin University, Tianjin 300350, China
  • 2Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300350, China
  • 3Stainless Cold Rolling Mill, Shanxi Taigang Stainless Steel Co., Ltd., Taiyuan, Shanxi 0 30003, China
  • show less
    Figures & Tables(9)
    Diagram of internal pressure of keyhole
    Collected images by electrical signal detector and high-speed camera. (a) Plasma images; (b) plasma area; (c) electrical signal voltage
    Diagram of welding test system
    Weld cross section, electrical signal, and autocorrelation function of A304 stainless steel and Q235 carbon steel under different heat input processes. (a) P=1000 W, v=12 mm/s; (b) P=1100 W, v=12 mm/s; (c) P=1200 W, v=12 mm/s; (d) P=1300 W, v=12 mm/s; (e) P=1300 W, v=8 mm/s; (f) P=1300 W, v=4 mm/s; (g) P=1000 W, v=8 mm/s; (h) P=1100 W, v=8 mm/s; (i) P=1200 W, v=8 mm/s; (j
    Relationship between plasma electrical signal oscillation period τmax and weld depth d
    Results of A304 stainless steel continuous welding process. (a) Electrical signal at initial stage; (b) electrical signal changes with increasing power; (c) electrical signal changes with decreasing power; (d) electrical signal throughout welding process; (e) autocorrelation function spectrum; (f) actual weld depth and predicted value
    Results of Q235 carbon steel continuous welding process. (a) Electrical signal at initial stage; (b) electrical signal changes with increasing power; (c) electrical signal changes with decreasing power; (d) electrical signal throughout welding process; (e) autocorrelation function spectrum; (f) actual weld depth and predicted value
    • Table 1. Welding parameters for constant heat input process

      View table

      Table 1. Welding parameters for constant heat input process

      ExperimentalmaterialLaserpowerP /WWeldingspeed v /(mm·s-1)Argon gasflow Q /(L·min-1)
      A304 stainless steel1300425
      A304 stainless steel1300625
      A304 stainless steel1300825
      A304 stainless steel13001025
      A304 stainless steel13001225
      Q235 carbon steel1300425
      Q235 carbon steel1300625
      Q235 carbon steel1300825
      Q235 carbon steel13001025
      Q235 carbon steel13001225
      A304 stainless steel10001225
      A304 stainless steel11001225
      A304 stainless steel12001225
      A304 stainless steel13001225
      A304 stainless steel14001225
      Q235 carbon steel1000825
      Q235 carbon steel1100825
      Q235 carbon steel1200825
      Q235 carbon steel1300825
      Q235 carbon steel1400825
    • Table 2. Welding parameters for varying heat input processes

      View table

      Table 2. Welding parameters for varying heat input processes

      ExperimentalmaterialLaserpowerP /WWeldingspeed v /(mm·s-1)Argon gasflow Q /(L·min-1)
      A304 stainless steel1100→1400→1100825
      Q235 carbon steel1100→1400→1100625
    Tools

    Get Citation

    Copy Citation Text

    Sai Xu, Lijun Yang, Shufeng Xu, Yiming Huang, Shengbin Zhao, Shanshan Li. Relation between Plasma Electrical Signal Oscillation and Weld Depth in Laser Deep Penetration Welding[J]. Chinese Journal of Lasers, 2020, 47(1): 0102006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Aug. 21, 2019

    Accepted: Sep. 26, 2019

    Published Online: Jan. 9, 2020

    The Author Email: Shufeng Xu (xusf@tisco.com.cn), Yiming Huang (ymhuang26@tju.edu.cn)

    DOI:10.3788/CJL202047.0102006

    Topics