Journal of the Chinese Ceramic Society, Volume. 52, Issue 1, 75(2024)

Multifunctional Interface Modification of Tetrabutylammonium Hexafluorophosphate to All-Inorganic CsPbI2Br Perovskite Solar Cells

WU Lin, CHEN Jianlin*, ZENG Yuxi, ZHAO Wei, WU Zihan, JU Jiayao, HUANG Jincheng, PENG Zhuoyin, and CHEN Jian
Author Affiliations
  • [in Chinese]
  • show less
    References(22)

    [1] [1] PATIL J V, MALI S S, HONG C K. A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells exceeding 17% efficiency[J]. Sol RRL, 2020, 4(7): 2000164.

    [2] [2] SONG J, XIE H B, LIM E L, et al. Progress and perspective on inorganic CsPbI2Br perovskite solar cells[J]. Adv Energy Mater, 2022, 12(40): 2201854.

    [3] [3] NI Z Y, BAO C X, LIU Y, et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells[J]. Science, 2020, 367(6484): 1352-1358.

    [4] [4] ZHENG X P, CHEN B, DAI J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nat Energy, 2017, 2: 17102.

    [5] [5] SHERKAR T S, MOMBLONA C, GIL-ESCRIG L, et al. Recombination in perovskite solar cells: Significance of grain boundaries, interface traps, and defect ions[J]. ACS Energy Lett, 2017, 2(5): 1214-1222.

    [6] [6] GUO Y X, ZHAO F, TAO J H, et al. Efficient and hole-transporting- layer-free CsPbI2 Br planar heterojunction perovskite solar cells through rubidium passivation[J]. ChemSusChem, 2019, 12(5): 983-989.

    [7] [7] XU Z M, ZHANG Z B, ZHOU X F. High-efficient hole-transport-material-free carbon-based all-inorganic perovskite solar cells using Cs-doped TiO2 nanorods array as the electron transport layer[J]. J Alloys Compd, 2022, 922: 166186.

    [8] [8] WANG Y, LIU X M, ZHANG T Y, et al. The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant-[J]. Angew Chem Int Ed Engl, 2019, 58(46): 16691-16696.

    [9] [9] LEE J W, KIM H S, PARK N G. Lewis acid-base adduct approach for high efficiency perovskite solar cells[J]. Acc Chem Res, 2016, 49(2): 311-319.

    [10] [10] ZHANG H, TIAN Q W, XIANG W C, et al. Tailored cysteine-derived molecular structures toward efficient and stable inorganic perovskite solar cells[J]. Adv Mater, 2023, 35(31): e2301140.

    [11] [11] BALL J M, PETROZZA A. Defects in perovskite-halides and their effects in solar cells[J]. Nat Energy, 2016, 1: 16149.

    [12] [12] ZHENG D D, YI F X, ZHANG Q Y, et al. Multidimensional function upgradation of all-inorganic CsPbIBr2 perovskite film by doping an ionic additive for carbon-electrode-based solar cells[J]. Energy Tech, 2022, 10(7): 2200290.

    [13] [13] XIONG S B, DAI Y, YANG J M, et al. Surface charge-transfer doping for highly efficient perovskite solar cells[J]. Nano Energy, 2021, 79: 105505.

    [14] [14] OUEDRAOGO N A N, CHEN Y C, XIAO Y Y, et al. Stability of all-inorganic perovskite solar cells[J]. Nano Energy, 2020, 67: 104249.

    [15] [15] YUAN X B, LI R, XIONG Z A, et al. Synergistic crystallization modulation and defects passivation via additive engineering stabilize perovskite films for efficient solar cells[J]. Adv Funct Mater, 2023, 33(24): 2215096.

    [16] [16] LUO J C, HE R, LAI H G, et al. Improved carrier management via a multifunctional modifier for high-quality low-bandgap Sn-Pb perovskites and efficient all-perovskite tandem solar cells[J]. Adv Mater, 2023, 35(22): e2300352.

    [17] [17] YU F Y, HAN Q J, WANG L A, et al. Surface management for carbon-based CsPbI2Br perovskite solar cell with 14% power conversion efficiency[J]. Sol RRL, 2021, 5(9): 2100404.

    [18] [18] ZHU X J, DU M Y, FENG J S, et al. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport[J]. Angew Chem Int Ed, 2021, 60(8): 4238-4244.

    [19] [19] MOKHTAR M S A M, CHIN YAP C, MAT SALLEH M, et al. Effect of organic salt doping ratios on the performance of poly(9,9-di-n-hexylfluorenyl-2, 7-diyl) organic light emitting diode, OLED[C]//AIP Conference Proceedings. Damai Laut, (Malaysia). AIP, 2011: 264-267.

    [20] [20] WANG Y, ZHANG T Y, XU F, et al. A facile low temperature fabrication of high performance CsPbI2Br all-inorganic perovskite solar cells[J]. Sol RRL, 2018, 2(1): 1700180.

    [21] [21] CHEN M, JU M G, CARL A D, et al. Cesium titanium(IV) bromide thin films based stable lead-free perovskite solar cells[J]. Joule, 2018, 2(3): 558-570.

    [22] [22] YUAN R H, CAI B, LV Y H, et al. Boosted charge extraction of NbOx-enveloped SnO2 nanocrystals enables 24% efficient planar perovskite solar cells[J]. Energy Environ Sci, 2021, 14(9): 5074-5083.

    Tools

    Get Citation

    Copy Citation Text

    WU Lin, CHEN Jianlin, ZENG Yuxi, ZHAO Wei, WU Zihan, JU Jiayao, HUANG Jincheng, PENG Zhuoyin, CHEN Jian. Multifunctional Interface Modification of Tetrabutylammonium Hexafluorophosphate to All-Inorganic CsPbI2Br Perovskite Solar Cells[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 75

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 3, 2023

    Accepted: --

    Published Online: Jul. 30, 2024

    The Author Email: CHEN Jianlin (cjlinhunu@csust.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics