Laser & Optoelectronics Progress, Volume. 60, Issue 18, 1811007(2023)

Research Progress in Semiconductor Based All-Optical Terahertz Spatial Modulators

Yulian He and Qiye Wen*
Author Affiliations
  • State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan , China
  • show less
    References(125)

    [1] He J W, Dong T, Zhang Y. Development of metasurfaces for wavefront modulation in terahertz waveband[J]. Infrared and Laser Engineering, 49, 20201033(2020).

    [2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [3] Federici J, Moeller L. Review of terahertz and subterahertz wireless communications[J]. Journal of Applied Physics, 107, 111101(2010).

    [4] Sun Q S, He Y Z, Liu K et al. Recent advances in terahertz technology for biomedical applications[J]. Quantitative Imaging in Medicine and Surgery, 7, 345-355(2017).

    [5] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications[J]. Laser & Photonics Reviews, 5, 124-166(2011).

    [6] Laurita N J, Cheng B, Barkhouser R et al. A modified 8f geometry with reduced optical aberrations for improved time domain terahertz spectroscopy[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 37, 894-902(2016).

    [7] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics[J]. Nature Photonics, 10, 371-379(2016).

    [8] Fu X J, Yang F, Liu C X et al. Terahertz beam steering technologies: from phased arrays to field-programmable metasurfaces[J]. Advanced Optical Materials, 8, 1900628(2020).

    [9] Lin X W, Wu J B, Hu W et al. Self-polarizing terahertz liquid crystal phase shifter[J]. AIP Advances, 1, 032133(2011).

    [10] Savo S, Shrekenhamer D, Padilla W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications[J]. Advanced Optical Materials, 2, 275-279(2014).

    [11] Shrekenhamer D, Montoya J, Krishna S et al. Four-color metamaterial absorber THz spatial light modulator[J]. Advanced Optical Materials, 1, 905-909(2013).

    [12] Watts C M, Shrekenhamer D, Montoya J et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 8, 605-609(2014).

    [13] Chan W L, Chen H T, Taylor A J et al. A spatial light modulator for terahertz beams[J]. Applied Physics Letters, 94, 213511(2009).

    [14] Sensale-Rodriguez B, Rafique S, Yan R S et al. Terahertz imaging employing graphene modulator arrays[J]. Optics Express, 21, 2324-2330(2013).

    [15] Kakenov N, Takan T, Ali Ozkan V et al. Graphene-enabled electrically controlled terahertz spatial light modulators[J]. Optics Letters, 40, 1984-1987(2015).

    [16] Hoque M N F, Karaoglan-Bebek G, Holtz M et al. High performance spatial light modulators for terahertz applications[J]. Optics Communications, 350, 309-314(2015).

    [17] Rout S, Sonkusale S R. A low-voltage high-speed terahertz spatial light modulator using active metamaterial[J]. APL Photonics, 1, 086102(2016).

    [18] Kakenov N, Ergoktas M S, Balci O et al. Graphene based terahertz phase modulators[J]. 2D Materials, 5, 035018(2018).

    [20] Kappa J, Sokoluk D, Klingel S et al. Electrically reconfigurable micromirror array for direct spatial light modulation of terahertz waves over a bandwidth wider than 1 THz[J]. Scientific Reports, 9, 2597(2019).

    [21] Wu J B, Shen Z, Ge S J et al. Liquid crystal programmable metasurface for terahertz beam steering[J]. Applied Physics Letters, 116, 131104(2020).

    [22] Malevich Y, Ergoktas M S, Bakan G et al. Video-speed graphene modulator arrays for terahertz imaging applications[J]. ACS Photonics, 7, 2374-2380(2020).

    [23] Li W L, Hu X M, Wu J B et al. Dual-color terahertz spatial light modulator for single-pixel imaging[J]. Light: Science & Applications, 11, 191(2022).

    [24] Chen B W, Wu J B, Li W L et al. Programmable terahertz metamaterials with non-volatile memory[J]. Laser & Photonics Reviews, 16, 2100472(2022).

    [25] Liu S, Xu F, Zhan J L et al. Terahertz liquid crystal programmable metasurface based on resonance switching[J]. Optics Letters, 47, 1891-1894(2022).

    [26] Tao S N, Shen Z X, Yu H G et al. Transflective spatial terahertz wave modulator[J]. Optics Letters, 47, 1650-1653(2022).

    [27] Liu C X, Yang F, Fu X J et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals[J]. Advanced Optical Materials, 9, 2100932(2021).

    [28] Shabanpour J. Programmable anisotropic digital metasurface for independent manipulation of dual-polarized THz waves based on a voltage-controlled phase transition of VO2 microwires[J]. Journal of Materials Chemistry C, 8, 7189-7199(2020).

    [29] Wang H, Ling F, Zhang B. Tunable metasurfaces for independent control of linearly and circularly polarized terahertz waves[J]. Optics Express, 28, 36316-36326(2020).

    [30] Shabanpour J, Beyraghi S, Cheldavi A. Ultrafast reprogrammable multifunctional vanadium-dioxide-assisted metasurface for dynamic THz wavefront engineering[J]. Scientific Reports, 10, 8950(2020).

    [31] Ren B, Feng Y X, Tang S A et al. Dynamic control of THz polarization modulation and multi-channel beam generation using a programmable metasurface[J]. Optics Express, 29, 17258-17268(2021).

    [32] Pan W M, Li J S, Zhou C. Switchable digital metasurface based on phase change material in the terahertz region[J]. Optical Materials Express, 11, 1070-1079(2021).

    [33] Wang L, Yang Y, Deng L et al. Vanadium dioxide embedded frequency reconfigurable metasurface for multi-dimensional multiplexing of terahertz communication[J]. Journal of Physics D: Applied Physics, 54, 255003(2021).

    [34] Huang K, Xie X D[M]. Semiconductor physics(2021).

    [35] Ulbricht R, Hendry E, Shan J E et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy[J]. Reviews of Modern Physics, 83, 543-586(2011).

    [36] van Exter M, Grischkowsky D. Carrier dynamics of electrons and holes in moderately doped silicon[J]. Physical Review B, 41, 12140-12149(1990).

    [37] Guan S N, Cheng J R, Chang S J. Recent progress of terahertz spatial light modulators: materials, principles and applications[J]. Micromachines, 13, 1637(2022).

    [38] Alius H, Dodel G. Amplitude-, phase-, and frequency modulation of far-infrared radiation by optical excitation of silicon[J]. Infrared Physics, 32, 1-11(1991).

    [39] Kannegulla A, Shams M I B, Liu L et al. Photo-induced spatial modulation of THz waves: opportunities and limitations[J]. Optics Express, 23, 32098-32112(2015).

    [40] Georgiou G, Tyagi H K, Mulder P et al. Photo-generated THz antennas[J]. Scientific Reports, 4, 3584(2014).

    [41] Brand G F. Diffraction of millimeter waves by projecting a shadow pattern onto a semiconductor[J]. International Journal of Infrared and Millimeter Waves, 17, 1253-1262(1996).

    [42] Brand G F. Remote millimeter-wave beam control by the illumination of a semiconductor[J]. IEEE Transactions on Microwave Theory and Techniques, 48, 855-857(2000).

    [43] Okada T, Ooi K, Nakata Y et al. Direct creation of a photoinduced metallic structure and its optical properties in the terahertz frequency region[J]. Optics Letters, 35, 1719-1721(2010).

    [44] Okada T, Tanaka K. Photo-designed terahertz devices[J]. Scientific Reports, 1, 121(2011).

    [45] Cheng L J, Liu L. Optical modulation of continuous terahertz waves towards cost-effective reconfigurable quasi-optical terahertz components[J]. Optics Express, 21, 28657-28667(2013).

    [46] Kamaraju N, Rubano A, Jian L K et al. Subcycle control of terahertz waveform polarization using all-optically induced transient metamaterials[J]. Light: Science & Applications, 3, e155(2014).

    [47] Kanda N, Konishi K, Kuwata-Gonokami M. All-photoinduced terahertz optical activity[J]. Optics Letters, 39, 3274-3277(2014).

    [48] Rizza C, Ciattoni A, Columbo L et al. Terahertz optically tunable dielectric metamaterials without microfabrication[J]. Optics Letters, 38, 1307-1309(2013).

    [49] Busch S, Scherger B, Scheller M et al. Optically controlled terahertz beam steering and imaging[J]. Optics Letters, 37, 1391-1393(2012).

    [50] Wang X K, Xie Z W, Sun W F et al. Focusing and imaging of a virtual all-optical tunable terahertz Fresnel zone plate[J]. Optics Letters, 38, 4731-4734(2013).

    [51] Shams M I B, Jiang Z G, Rahman S M et al. A 740-GHz dynamic two-dimensional beam-steering and forming antenna based on photo-induced reconfigurable Fresnel zone plates[J]. IEEE Transactions on Terahertz Science and Technology, 7, 310-319(2017).

    [52] Xie Z W, Wang X K, Ye J S et al. Spatial terahertz modulator[J]. Scientific Reports, 3, 3347(2013).

    [53] Xie Z W, He J W, Wang X K et al. Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers[J]. Optics Letters, 40, 359-362(2015).

    [54] Lee G, Lee J, Park Q H et al. Frontiers in terahertz imaging applications beyond absorption cross-section and diffraction limits[J]. ACS Photonics, 9, 1500-1512(2022).

    [55] Castro-Camus E, Koch M, Mittleman D M. Recent advances in terahertz imaging: 1999 to 2021[J]. Applied Physics B, 128, 12(2021).

    [56] Valušis G, Lisauskas A, Yuan H et al. Roadmap of terahertz imaging 2021[J]. Sensors, 21, 4092(2021).

    [57] Lu T A, Qiu Z H, Zhang Z B et al. Comprehensive comparison of single-pixel imaging methods[J]. Optics and Lasers in Engineering, 134, 106301(2020).

    [58] Stantchev R I, Phillips D B, Hobson P et al. Compressed sensing with near-field THz radiation[J]. Optica, 4, 989-992(2017).

    [59] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 21, 12507-12518(2013).

    [60] Chan W L, Charan K, Takhar D et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008).

    [61] Zanotto L, Piccoli R, Dong J et al. Time-domain terahertz compressive imaging[J]. Optics Express, 28, 3795-3802(2020).

    [62] Stantchev R I, Yu X, Blu T et al. Real-time terahertz imaging with a single-pixel detector[J]. Nature Communications, 11, 2535(2020).

    [63] Stantchev R I, Sun B Q, Hornett S M et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2, e1600190(2016).

    [64] Chen S C, Du L H, Meng K et al. Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100[J]. Optics Letters, 44, 21-24(2018).

    [65] Bai Y, Bu T, Chen K J et al. Review about the optical-controlled terahertz waves modulator[J]. Applied Spectroscopy Reviews, 50, 707-727(2015).

    [66] Liu W M, Fan F, Xu S T et al. Terahertz wave modulation enhanced by laser processed PVA film on Si substrate[J]. Scientific Reports, 8, 8304(2018).

    [67] Fu M X, Wang X K, Wang S et al. Efficient terahertz modulator based on photoexcited graphene[J]. Optical Materials, 66, 381-385(2017).

    [68] Liu X, Zhang B, Wang G C et al. Active terahertz wave modulator based on molybdenum disulfide[J]. Optical Materials, 73, 718-722(2017).

    [69] Yue J, Ling F R, Yao J Q. All-optical tunable terahertz modulator based on a BiFeO3/Si heterostructure[J]. Optical Materials Express, 10, 2919-2927(2020).

    [70] Wei M Q, Zhang D N, Li Y P et al. High-performance all-optical terahertz modulator based on graphene/TiO2/Si trilayer heterojunctions[J]. Nanoscale Research Letters, 14, 1-6(2019).

    [71] Wen T L, Zhang D N, Wen Q Y et al. Enhanced optical modulation depth of terahertz waves by self-assembled monolayer of plasmonic gold nanoparticles[J]. Advanced Optical Materials, 4, 1974-1980(2016).

    [72] Zhou R Y, Wang C, Huang Y X et al. Optically enhanced terahertz modulation and sensing in aqueous environment with gold nanorods[J]. Optics and Lasers in Engineering, 133, 106147(2020).

    [73] He T, Zhang B, Shen J L et al. High-efficiency THz modulator based on phthalocyanine-compound organic films[J]. Applied Physics Letters, 106, 053303(2015).

    [74] Yoo H K, Yoon Y, Lee K et al. Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers[J]. Applied Physics Letters, 105, 011115(2014).

    [75] Yoo H K, Kang C, Kee C S et al. Characteristics of terahertz wave modulation using wavelength-selective photoexcitation in pentacene/Si and TIPS pentacene/Si bilayers[J]. AIP Advances, 6, 115310(2016).

    [76] Matsui T, Mori H, Inose Y et al. Efficient optical terahertz-transmission modulation in solution-processable organic semiconductor thin films on silicon substrate[J]. Japanese Journal of Applied Physics, 55, 03DC12(2016).

    [77] Park J M, Sohn I B, Kang C et al. Terahertz modulation using TIPS-pentacene thin films deposited on patterned silicon substrates[J]. Optics Communications, 359, 349-352(2016).

    [78] Zhang B, He T, Shen J L et al. Conjugated polymer-based broadband terahertz wave modulator[J]. Optics Letters, 39, 6110-6113(2014).

    [79] Wang W, Zhang B, Ji H Y et al. Terahertz spatial-shift modulation by photo-excitation of polymer/silicon hybrid structures[J]. Optics Communications, 421, 110-114(2018).

    [80] He T, Zhang B, Wang G C et al. High efficiency THz-wave modulators based on conjugated polymer-based organic films[J]. Journal of Physics D: Applied Physics, 49, 075111(2016).

    [81] Yoo H K, Lee H J, Lee K et al. Conditions for optimal efficiency of PCBM-based terahertz modulators[J]. AIP Advances, 7, 105008(2017).

    [82] Song M S, Kang C, Kee C S et al. Trilayer hybrid structures for highly efficient THz modulation[J]. Optics Express, 26, 25315-25321(2018).

    [83] Yoo H K, Cho S B, Park S J et al. Metal-organic hybrid metamaterials for spectral-band selective active terahertz modualtors[J]. Applied Sciences, 11, 2765(2021).

    [84] Li J S, Li S H, Zhang L. Terahertz modulator using 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate (DAST)/Si hybrid structure[J]. IEEE Photonics Journal, 10, 5900306(2018).

    [85] Liu Y Q, Li X A, Yang T T et al. Mechanism of terahertz reflection enhancement on photo-excited MEH-PPV/PEDOT: PSS/Si hybrid structure[J]. Modern Physics Letters B, 35, 2150457(2021).

    [86] Zhang B, Lv L F, He T et al. Active terahertz device based on optically controlled organometal halide perovskite[J]. Applied Physics Letters, 107, 093301(2015).

    [87] Lee K S, Kang R, Son B et al. All-optical THz wave switching based on CH3NH3PbI3 perovskites[J]. Scientific Reports, 6, 37912(2016).

    [88] Liu D D, Wang W, Xiong L Y et al. High-efficiency optical terahertz modulation of organometallic halide perovskite nanoplates on silicon[J]. Optical Materials, 96, 109368(2019).

    [89] Lai W E, Ge C D, Yuan H et al. NIR light driven terahertz wave modulator with a large modulation depth based on a silicon-PEDOT: PSS-perovskite hybrid system[J]. Advanced Materials Technologies, 5, 1901090(2020).

    [90] Li S H, Li J S. Terahertz modulator a using CsPbBr3 perovskite quantum dots heterostructure[J]. Applied Physics B, 124, 224(2018).

    [91] Fu Y Z, Tan Z Y, Wang C et al. Research on optical controlled terahertz modulator based on monolayer tungsten disulfide[J]. Journal of Infrared and Millimeter Waves, 38, 655-661(2019).

    [92] Weis P, Garcia-Pomar J L, Höh M et al. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 6, 9118-9124(2012).

    [93] Du W Y, Yao Z H, Zhu L P et al. Photodoping of graphene/silicon van der Waals heterostructure observed by terahertz emission spectroscopy[J]. Applied Physics Letters, 117, 081106(2020).

    [94] Wang G C, Zhang B, Ji H Y et al. Monolayer graphene based organic optical terahertz modulator[J]. Applied Physics Letters, 110, 023301(2017).

    [95] Dai Z J, Jing Y, Cheng G et al. Optically controlled graphene based terahertz modulator[J]. Infrared and Laser Engineering, 48, 0125001(2019).

    [96] Du W Y, Zhou Y X, Yao Z H et al. Active broadband terahertz wave impedance matching based on optically doped graphene-silicon heterojunction[J]. Nanotechnology, 30, 195705(2019).

    [97] Cao Y P, Gan S, Geng Z X et al. Optically tuned terahertz modulator based on annealed multilayer MoS2[J]. Scientific Reports, 6, 22899(2016).

    [98] Chen S, Fan F, Miao Y P et al. Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets[J]. Nanoscale, 8, 4713-4719(2016).

    [99] Zheng W, Fan F, Chen M et al. Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface[J]. AIP Advances, 6, 075105(2016).

    [100] Ji J E, Zhou S Y, Wang W J et al. Active control of terahertz plasmon-induced transparency in the hybrid metamaterial/monolayer MoS2/Si structure[J]. Nanoscale, 11, 9429-9435(2019).

    [101] Hao S B, Cheng Y C, Zhou J P et al. Enhanced terahertz transmission in molybdenum disulfide/silicon heterojunction[J]. Advanced Photonics Research, 3, 2100201(2022).

    [102] Fan Z Y, Geng Z X, Lv X Q et al. Optical controlled terahertz modulator based on tungsten disulfide nanosheet[J]. Scientific Reports, 7, 14828(2017).

    [103] Yang D S, Jiang T A, Cheng X A. Optically controlled terahertz modulator by liquid-exfoliated multilayer WS2 nanosheets[J]. Optics Express, 25, 16364-16377(2017).

    [104] Qiao J, Wang S P, Wang Z M et al. Ultrasensitive and broadband all-optically controlled THz modulator based on MoTe2/Si van der Waals heterostructure[J]. Advanced Optical Materials, 8, 2000160(2020).

    [105] Jakhar A, Kumar P, Moudgil A et al. Optically pumped broadband terahertz modulator based on nanostructured PtSe2 thin films[J]. Advanced Optical Materials, 8, 1901714(2020).

    [106] Jakhar A, Kumar P, Husain S et al. Integration of nanometer-thick 1T-TaS2 films with silicon for an optically driven wide-band terahertz modulator[J]. ACS Applied Nano Materials, 3, 10767-10777(2020).

    [107] Fan Z Y, Geng Z X, Fang W H et al. Characteristics of transition metal dichalcogenides in optical pumped modulator of terahertz wave[J]. AIP Advances, 10, 045304(2020).

    [108] Li Z W, Li J S. Bi2O2Se for broadband terahertz wave switching[J]. Applied Optics, 59, 11076-11079(2020).

    [109] Yao Z H, Huang Y Y, Du W Y et al. Interface-induced enhancement of THz generation and modulation in hexagonal boron nitride/Si mixed-dimensional van der Waals heterostructure[J]. IEEE Transactions on Terahertz Science and Technology, 10, 101-106(2020).

    [110] Li Y P, Wen T L, Zhang D N et al. Comparison study of gold nanorod and nanoparticle monolayer enhanced optical terahertz modulators[J]. IEEE Transactions on Terahertz Science and Technology, 9, 484-490(2019).

    [111] Yu J P, Chen S, Fan F et al. Accelerating terahertz all-optical modulation by hot carriers effects of silver nanorods in PVA film[J]. AIP Advances, 9, 075017(2019).

    [112] Xiong L Y, Zhang B, Ji H Y et al. Active optically controlled broadband terahertz modulator based on Fe3O4 nanoparticles[J]. IEEE Transactions on Terahertz Science and Technology, 8, 535-540(2018).

    [113] Du W Y, Huang Y Y, Zhou Y X et al. Terahertz interface physics: from terahertz wave propagation to terahertz wave generation[J]. Journal of Physics D: Applied Physics, 55, 223002(2022).

    [114] She R B, Liu W Q, Wei G L et al. Terahertz single-pixel imaging improved by using silicon wafer with SiO2 passivation[J]. Applied Sciences, 10, 2427(2020).

    [115] Hooper I R, Grant N E, Barr L E et al. High efficiency photomodulators for millimeter wave and THz radiation[J]. Scientific Reports, 9, 18304(2019).

    [116] Liu P Q, Luxmoore I J, Mikhailov S A et al. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons[J]. Nature Communications, 6, 8969(2015).

    [117] He Y L. Research on terahertz modulators with surface/interface enhancement[D], 26-43(2022).

    [118] Gatesman A J, Waldman J, Ji M et al. An anti-reflection coating for silicon optics at terahertz frequencies[J]. IEEE Microwave and Guided Wave Letters, 10, 264-266(2000).

    [119] Chen Y W, Han P Y, Zhang X C. Tunable broadband antireflection structures for silicon at terahertz frequency[J]. Applied Physics Letters, 94, 041106(2009).

    [120] Yu X, Goto K, Yasunaga Y et al. Polymer-coated moth-eye hybrid structure for broadband antireflection in the terahertz region[J]. Optics Letters, 46, 3761-3764(2021).

    [121] Shi Z W, Cao X X, Wen Q Y et al. Terahertz modulators based on silicon nanotip array[J]. Advanced Optical Materials, 6, 1700620(2018).

    [122] Wen Q Y, He Y L, Yang Q H et al. High-performance photo-induced spatial terahertz modulator based on micropyramid silicon array[J]. Advanced Materials Technologies, 5, 1901058(2020).

    [123] He Y L, Wang Y S, Li M et al. All-optical spatial terahertz modulator with surface-textured and passivated silicon[J]. Optics Express, 29, 8914-8925(2021).

    [124] Tian W, Wen Q Y, Chen Z et al. Optically tuned wideband terahertz wave amplitude modulator based on gold-doped silicon[J]. Acta Physica Sinica, 64, 028401(2015).

    [125] He Y L, Wang Y S, Yang Q H et al. Enhanced performance of a fast GaAs-based terahertz modulator via surface passivation[J]. Photonics Research, 9, 2230-2236(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yulian He, Qiye Wen. Research Progress in Semiconductor Based All-Optical Terahertz Spatial Modulators[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Apr. 18, 2023

    Accepted: Jul. 18, 2023

    Published Online: Sep. 19, 2023

    The Author Email: Wen Qiye (qywen@uestu.edu.cn)

    DOI:10.3788/LOP231428

    Topics