Journal of Synthetic Crystals, Volume. 51, Issue 12, 2164(2022)
Research Progress of Layered Ternary MAX Phase Solid Solutions
[1] [1] JEITSCHKO W, NOWOTNY H. Die kristallstruktur von Ti3SiC2—ein neuer komplexcarbidtyp[J]. Monatshefte für ChemieChemical Monthly, 1967, 98(2): 329337.
[2] [2] WOLFSGRUBER H, NOWOTNY H, BENESOVSKY F. Die kristallstruktur von Ti3GeC2[J]. Monatshefte für Chemie Und Verwandte Teile Anderer Wissenschaften, 1967, 98(6): 24032405.
[3] [3] JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Die Hphasen: Ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN und Nb2GaC[J]. Monatshefte für Chemie Und Verwandte Teile Anderer Wissenschaften, 1964, 95(1): 178179.
[4] [4] NOWOTNY V H. Strukturchemie einiger verbindungen der übergangsmetalle mit den elementen C, Si, Ge, Sn[J]. Progress in Solid State Chemistry, 1971, 5: 2770.
[5] [5] BARSOUM M W. The MN+1AXN phases: a new class of solids[J]. Progress in Solid State Chemistry, 2000, 28(1/2/3/4): 201281.
[6] [6] TALLMAN D J, ANASORI B, BARSOUM M W. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air[J]. Materials Research Letters, 2013, 1(3): 115125.
[7] [7] JIN S, SU T C, HU Q K, et al. Thermal conductivity and electrical transport properties of doubleAlayer MAX phase Mo2Ga2C[J]. Materials Research Letters, 2020, 8(4): 158164.
[8] [8] SHAMSIPOOR A, FARVIZI M, RAZAVI M, et al. Hot corrosion behavior of Cr2AlC MAX phase and CoNiCrAlY compounds at 950 ℃ in presence of Na2SO4+V2O5 molten salts[J]. Ceramics International, 2021, 47(2): 23472357.
[9] [9] LU J L, ABBAS N, TANG J N, et al. Synthesis and characterization of conductive ceramic MAXphase coatings for metal bipolar plates in simulated PEMFC environments[J]. Corrosion Science, 2019, 158: 108106.
[10] [10] HADI M A, KELAIDIS N, NAQIB S H, et al. Mechanical behaviors, lattice thermal conductivity and vibrational properties of a new MAX phase Lu2SnC[J]. Journal of Physics and Chemistry of Solids, 2019, 129: 162171.
[11] [11] SUN Z M, HASHIMOTO H, ZHANG Z F, et al. Synthesis and characterization of a metallic ceramic materialTi3SiC2[J]. Materials Transactions, 2006, 47(1): 170174.
[12] [12] ZHANG Z, DUAN X M, JIA D C, et al. On the formation mechanisms and properties of MAX phases: a review[J]. Journal of the European Ceramic Society, 2021, 41(7): 38513878.
[14] [14] FASHANDI H, DAHLQVIST M, LU J, et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for hightemperaturestable Ohmic contacts to SiC[J].Nature Materials, 2017, 16(8): 814818.
[16] [16] HU C, LAI C C, TAO Q, et al. Mo2Ga2C: a new ternary nanolaminated carbide[J]. Chemical Communications, 2015, 51(30): 65606563.
[17] [17] LANE N J, NAGUIB M, LU J, et al. Comment on “Ti5Al2C3: a new ternary carbide belonging to MAX phases in the TiAlC system”[J]. Journal of the American Ceramic Society, 2012, 95(10): 33523354.
[18] [18] LIN Z J, ZHUO M J, ZHOU Y C, et al. Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides[J]. Journal of the American Ceramic Society, 2006, 89(12): 37653769.
[19] [19] ZHANG J, LIU B, WANG J Y, et al. Lowtemperature instability of Ti2SnC: a combined transmission electron microscopy, differential scanning calorimetry, and Xray diffraction investigations[J]. Journal of Materials Research, 2009, 24(1): 3949.
[20] [20] MENG F L, ZHOU Y C, WANG J Y. Strengthening of Ti2AlC by substituting Ti with V[J]. Scripta Materialia, 2005, 53(12): 13691372.
[21] [21] SUN S Y, YU Y D, SUN S L, et al. Magnetic properties and microstructures of Fedoped (Ti1-xFex)3AlC2 MAX phase and their MXene derivatives[J]. Journal of Superconductivity and Novel Magnetism, 2021, 34(5): 14771483.
[22] [22] AZINA C, TUNCA B, PETRUHINS A, et al. Deposition of MAX phasecontaining thin films from a (Ti, Zr)2AlC compound target[J]. Applied Surface Science, 2021, 551: 149370.
[23] [23] MANOUN B, LEAFFER O D, GUPTA S, et al. On the compression behavior of Ti2InC, (Ti0.5, Zr0.5)2InC, and M2SnC (M=Ti, Nb, Hf) to quasihydrostatic pressures up to 50 GPa[J]. Solid State Communications, 2009, 149(43/44): 19781983.
[24] [24] SCHUSTER J C, NOWOTNY H, VACCARO C. The ternary systems: CrAlC, VAlC, and TiAlC and the behavior of Hphases (M2AlC)[J]. Journal of Solid State Chemistry, 1980, 32(2): 213219.
[25] [25] SALAMA I, ELRAGHY T, BARSOUM M W. Synthesis and mechanical properties of Nb2AlC and (Ti, Nb)2AlC[J]. Journal of Alloys and Compounds, 2002, 347(1/2): 271278.
[26] [26] PAN R J, ZHU J F, LIU Y M. Synthesis, microstructure and properties of (Ti1-x, Mox)2AlC phases[J]. Materials Science and Technology, 2018, 34(9): 10641069.
[27] [27] BARSOUM M W, GOLCZEWSKI J, SEIFERT H J, et al. Fabrication and electrical and thermal properties of Ti2InC, Hf2InC and (Ti, Hf)2InC[J]. Journal of Alloys and Compounds, 2002, 340(1/2): 173179.
[28] [28] SRIDHARAN S, NOWOTNY H. Studies in the ternary system TiTaAl and in the quaternary system TiTaAlC[J]. International Journal of Materials Research, 1983, 74(7): 468472.
[29] [29] HAMM C M, DUERRSCHNABEL M, MOLINALUNA L, et al. Structural, magnetic and electrical transport properties of nonconventionally prepared MAX phases V2AlC and (V/Mn)2AlC[J]. Materials Chemistry Frontiers, 2018, 2(3): 483490.
[30] [30] CASPI E N, CHARTIER P, PORCHER F, et al. Ordering of (Cr, V) layers in nanolamellar (Cr0.5V0.5)n+1AlCn compounds[J]. Materials Research Letters, 2015, 3(2): 100106.
[31] [31] PHATAK N A, SAXENA S K, FEI Y W, et al. Synthesis of a new MAX compound (Cr0.5V0.5)2GeC and its compressive behavior up to 49 GPa[J]. Journal of Alloys and Compounds, 2009, 475(1/2): 629634.
[32] [32] LAI C C, TAO Q Z, FASHANDI H, et al. Magnetic properties and structural characterization of layered (Cr0.5Mn0.5)2AuC synthesized by thermally induced substitutional reaction in (Cr0.5Mn0.5)2GaC[J]. APL Materials, 2018, 6(2): 026104.
[33] [33] LIU Z, WAKI T, TABATA Y, et al. Mndopinginduced itinerantelectron ferromagnetism in Cr2GeC[J]. Physical Review B, 2014, 89(5): 054435.
[34] [34] INGASON A S, MOCKUTE A, DAHLQVIST M, et al. Magnetic selforganized atomic laminate from first principles and thin film synthesis[J]. Physical Review Letters, 2013, 110(19): 195502.
[35] [35] HAMM C M, BOCARSLY J D, SEWARD G, et al. Nonconventional synthesis and magnetic properties of MAX phases (Cr/Mn)2AlC and (Cr/Fe)2AlC[J]. Journal of Materials Chemistry C, 2017, 5(23): 57005708.
[36] [36] MOCKUTE A, PERSSON P O , MAGNUS F, et al. Synthesis and characterization of arc deposited magnetic (Cr, Mn)2AlC MAX phase films[J]. Physica Status Solidi (RRL)Rapid Research Letters, 2014, 8(5): 420423.
[37] [37] GORSHKOV V A, KOVALEV D Y, BOYARCHENKO O D, et al. Hightemperature synthesis of CrMoAlC materials[J]. Inorganic Materials, 2021, 57(12): 13001306.
[38] [38] HALIM J, PALISAITIS J, LU J, et al. Synthesis of twodimensional Nb1.33C (MXene) with randomly distributed vacancies by etching of the quaternary solid solution (Nb2/3Sc1/3)2AlC MAX phase[J]. ACS Applied Nano Materials, 2018, 1(6): 24552460.
[39] [39] SCHUSTER J C, NOWOTNY H. Investigations of the ternary systems (Zr, Hf, Nb, Ta)AlC and studies on complex carbides[J]. International Journal of Materials Research, 1980, 71(6): 341346.
[40] [40] NAGUIB M, BENTZEL G W, SHAH J, et al. New solid solution MAX phases: (Ti0.5, V0.5)3AlC2, (Nb0.5, V0.5)2AlC, (Nb0.5, V0.5)4AlC3 and (Nb0.8, Zr0.2)2AlC[J]. Materials Research Letters, 2014, 2(4): 233240.
[41] [41] LAPAUW T, TUNCA B, POTASHNIKOV D, et al. The double solid solution (Zr, Nb)2(Al, Sn)C MAX phase: a steric stability approach[J]. Scientific Reports, 2018, 8: 12801.
[42] [42] THRNBERG J, HALIM J, LU J, et al. Synthesis of (V2/3Sc1/3)2AlC iMAX phase and V2-xC MXene scrolls[J]. Nanoscale, 2019, 11(31): 1472014726.
[43] [43] DAHLQVIST M, LU J, MESHKIAN R, et al. Prediction and synthesis of a family of atomic laminate phases with Kagomélike and inplane chemical ordering[J]. Science Advances, 2017, 3(7): e1700642.
[44] [44] LU J, THORE A, MESHKIAN R, et al. Theoretical and experimental exploration of a novel inplane chemically ordered (Cr2/3M1/3)2AlC iMAX phase with M=Sc and Y[J]. Crystal Growth & Design, 2017, 17(11): 57045711.
[45] [45] SOKOL M, NATU V, KOTA S, et al. On the chemical diversity of the MAX phases[J]. Trends in Chemistry, 2019, 1(2): 210223.
[46] [46] CHEN L G, DAHLQVIST M, LAPAUW T, et al. Theoretical prediction and synthesis of (Cr2/3Zr1/3)2AlC iMAX phase[J]. Inorganic Chemistry, 2018, 57(11): 62376244.
[47] [47] TAO Q Z, DAHLQVIST M, LU J, et al. Twodimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with inplane chemical ordering[J]. Nature Communications, 2017, 8: 14949.
[48] [48] MESHKIAN R, TAO Q Z, DAHLQVIST M, et al. Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its twodimensional derivate Mo2ScC2 MXene[J]. Acta Materialia, 2017, 125: 476480.
[49] [49] DAHLQVIST M, PETRUHINS A, LU J, et al. Origin of chemically ordered atomic laminates (iMAX): expanding the elemental space by a theoretical/experimental approach[J]. ACS Nano, 2018, 12(8): 77617770.
[50] [50] TAO Q Z, LU J, DAHLQVIST M, et al. Atomically layered and ordered rareearth iMAX phases: a new class of magnetic quaternary compounds[J]. Chemistry of Materials, 2019, 31(7): 24762485.
[51] [51] MESHKIAN R, DAHLQVIST M, LU J, et al. Wbased atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering[J]. Advanced Materials, 2018, 30(21): 1706409.
[52] [52] LU C J, PIVEN K, QI Q, et al. Substitution behavior of Si atoms in the Ti2AlC ceramics[J]. Acta Materialia, 2018, 144: 543551.
[53] [53] DING H M, LI Y B, LU J, et al. Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N by Asite replacement reaction in molten salts[J]. Materials Research Letters, 2019, 7(12): 510516.
[54] [54] WANG Z Y, SUN J, XU B B, et al. Reducing the selfhealing temperature of Ti2AlC MAX phase coating by substituting Al with Sn[J]. Journal of the European Ceramic Society, 2020, 40(1): 197201.
[55] [55] ETZKORN J, ADE M, KOTZOTT D, et al. Ti2GaC, Ti4GaC3 and Cr2GaC—Synthesis, crystal growth and structure analysis of Gacontaining MAXphases Mn+1GaCn with M=Ti, Cr and n=1, 3[J]. Journal of Solid State Chemistry, 2009, 182(5): 9951002.
[56] [56] YU W B, LI S B, SLOOF W G. Microstructure and mechanical properties of a Cr2Al(Si)C solid solution[J]. Materials Science and Engineering: A, 2010, 527(21/22): 59976001.
[57] [57] CABIOCH T, EKLUND P, MAUCHAMP V, et al. Tailoring of the thermal expansion of Cr2(Alx, Ge1-x)C phases[J]. Journal of the European Ceramic Society, 2013, 33(4): 897904.
[58] [58] HORLAIT D, GRASSO S, CHRONEOS A, et al. Attempts to synthesise quaternary MAX phases (Zr, M)2AlC and Zr2(Al, A)C as a way to approach Zr2AlC[J]. Materials Research Letters, 2016, 4(3): 137144.
[59] [59] HORLAIT D, MIDDLEBURGH S C, CHRONEOS A, et al. Synthesis and DFT investigation of new bismuthcontaining MAX phases[J]. Scientific Reports, 2016, 6: 18829.
[60] [60] CABIOC’H T, EKLUND P, MAUCHAMP V, et al. Structural investigation of substoichiometry and solid solution effects in Ti2Al(Cx, N1-x)y compounds[J]. Journal of the European Ceramic Society, 2012, 32(8): 18031811.
[61] [61] KUBITZA N, REITZ A, ZIESCHANG A M, et al. From MAX phase carbides to nitrides: synthesis of V2GaC, V2GaN, and the carbonitride V2GaC1-xNx[J]. Inorganic Chemistry, 2022, 61(28): 1063410641.
[62] [62] QU L S, BEI G P, STELZER B, et al. Synthesis, crystal structure, microstructure and mechanical properties of (Ti1-xZrx)3SiC2 MAX phase solid solutions[J]. Ceramics International, 2019, 45(1): 14001408.
[63] [63] FANG Y, FENG Y X, LIU X H, et al. Influence of Mo doping on the tribological behavior of Ti3AlC2 ceramic at different temperatures[J]. Ceramics International, 2021, 47(18): 2552025530.
[64] [64] ZHOU Y C, MENG F L, ZHANG J. New MAXphase compounds in the VCrAlC system[J]. Journal of the American Ceramic Society, 2008, 91(4): 13571360.
[65] [65] LIU Z M, ZHENG L Y, SUN L C, et al. (Cr2/3 Ti1/3)3 AlC2 and (Cr5/8 Ti3/8)4 AlC3: new MAXphase compounds in TiCrAlC system[J]. Journal of the American Ceramic Society, 2014, 97(1): 6769.
[66] [66] BURR P A, HORLAIT D, LEE W E. Experimental and DFT investigation of (Cr, Ti)3AlC2 MAX phases stability[J]. Materials Research Letters, 2017, 5(3): 144157.
[67] [67] ZAPATASOLVAS E, HADI M A, HORLAIT D, et al. Synthesis and physical properties of (Zr1-x, Tix)3AlC2MAX phases[J]. Journal of the American Ceramic Society, 2017, 100(8): 33933401.
[68] [68] RIGBYBELL M T P, NATU V, SOKOL M, et al. Synthesis of new Mlayer solidsolution 312 MAX phases (Ta1-xTix)3AlC2 (x=0.4, 0.62, 0.75, 0.91 or 0.95), and their corresponding MXenes[J]. RSC Advances, 2021, 11(5): 31103114.
[69] [69] LIU Z M, WU E D, WANG J M, et al. Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase[J]. Acta Materialia, 2014, 73: 186193.
[70] [70] ANASORI B, DAHLQVIST M, HALIM J, et al. Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3[J]. Journal of Applied Physics, 2015, 118(9): 094304.
[71] [71] GAO L N, LI S F, HAN T, et al. Microstructure, properties and fracture mechanism of MAX phase Ti3AlC2 ceramics with Si doping via TiAlC system by powder metallurgy[J]. Journal of Materials Research and Technology, 2021, 15: 36633672.
[72] [72] GAO H L, BENITEZ R, SON W, et al. Structural, physical and mechanical properties of Ti3(Al1-xSix)C2 solid solution with x=01[J]. Materials Science and Engineering: A, 2016, 676: 197208.
[73] [73] ZHANG H B, ZHOU Y C, BAO Y W, et al. Improving the oxidation resistance of Ti3SiC2 by forming a Ti3Si0.9Al0.1C2 solid solution[J]. Acta Materialia, 2004, 52(12): 36313637.
[74] [74] ZHOU Y C, CHEN J X, WANG J Y. Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1-xSixC2 solid solutions[J]. Acta Materialia, 2006, 54(5): 13171322.
[75] [75] GOU B B, WANG L L, YE B, et al. Lowtemperature synthesis of purephase Ti3(Al, Fe)C2 solid solution with magnetic monoatomic layers by replacement reaction[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(10): 1308113088.
[76] [76] NECHICHE M, CABIOC'H T, CASPI E N, et al. Evidence for symmetry reduction in Ti3(Al1-δCuδ)C2 MAX phase solid solutions[J]. Inorganic Chemistry, 2017, 56(23): 1438814395.
[77] [77] FANG Y, LIU X H, ZHU J F, et al. Effect of Ga on the microstructure and mechanical properties of Ti3(Al1-x, Gax)C2[J]. Materials Science and Engineering: A, 2020, 771: 138651.
[78] [78] GANGULY A, ZHEN T, BARSOUM M W. Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1-x)C2 (x = 0.5, 0.75) solid solutions[J]. Journal of Alloys and Compounds, 2004, 376(1/2): 287295.
[79] [79] BENTZEL G W, SOKOL M, GRIGGS J, et al. On the interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with palladium at 900 ℃[J]. Journal of Alloys and Compounds, 2019, 771: 11031110.
[80] [80] BEI G P, GAUTHIERBRUNET V, TROMAS C, et al. Synthesis, characterization, and intrinsic hardness of layered nanolaminate Ti3AlC2 and Ti3Al0.8Sn0.2C2 solid solution[J]. Journal of the American Ceramic Society, 2012, 95(1): 102107.
[81] [81] DROUELLE E, BRUNET V, CORMIER J, et al. Oxidation resistance of Ti3 AlC2 and Ti3Al0.8Sn0.2C2 MAX phases: a comparison[J]. Journal of the American Ceramic Society, 2020, 103(2): 12701280.
[82] [82] TIAN Z H, WU F S, HU P Y, et al. Synthesis of Ti3(SnxAl1-x)C2 solid solutions over the whole composition range[J]. Journal of Alloys and Compounds, 2022, 894: 162429.
[83] [83] CAI L P, HUANG Z Y, HU W Q, et al. Effects of Al substitution with Si and Sn on tribological performance of Ti3AlC2[J]. Ceramics International, 2021, 47(5): 63526361.
[84] [84] ZAPATASOLVAS E, CHRISTOPOULOS S R G, NI N, et al. Experimental synthesis and density functional theory investigation of radiation tolerance of Zr3(Al1-xSix)C2MAX phases[J]. Journal of the American Ceramic Society, 2017, 100(4): 13771387.
[85] [85] ETZKORN J, ADE M, HILLEBRECHT H. Ta3AlC2 and Ta4AlC3: singlecrystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique[J]. Inorganic Chemistry, 2007, 46(4): 14101418.
[86] [86] MANOUN B, SAXENA S K, HUG G, et al. Synthesis and compressibility of Ti3(Al, Sn0.2)C2 and Ti3Al(C0.5, N0.5)2[J]. Journal of Applied Physics, 2007, 101(11): 113523.
[87] [87] SCABAROZI T, GANGULY A, HETTINGER J D, et al. Electronic and thermal properties of Ti3Al(C0.5, N0.5)2, Ti2Al(C0.5, N0.5) and Ti2AlN[J]. Journal of Applied Physics, 2008, 104(7): 073713.
[88] [88] RADOVIC M, GANGULY A, BARSOUM M W. Elastic properties and phonon conductivities of Ti3Al(C0.5, N0.5)2 and Ti2Al(C0.5, N0.5) solid solutions[J].Journal of Materials Research, 2008, 23(6): 15171521.
[89] [89] YANG J, NAGUIB M, GHIDIU M, et al. Twodimensional Nbbased M4C3 solid solutions (MXenes)[J]. Journal of the American Ceramic Society, 2016, 99(2): 660666.
[90] [90] GU J, PAN L M, YANG J, et al. Mechanical properties and oxidation behavior of Tidoped Nb4AlC3[J]. Journal of the European Ceramic Society, 2016, 36(4): 10011008.
[91] [91] LAPAUW T, TYTKO D, VANMEENSEL K, et al. (Nbx, Zr1-x)4AlC3 MAX phase solid solutions: processing, mechanical properties, and density functional theory calculations[J]. Inorganic Chemistry, 2016, 55(11): 54455452.
[92] [92] LAPAUW T, SWARNAKAR A K, TUNCA B, et al. Nanolaminated ternary carbide (MAX phase) materials for high temperature applications[J]. International Journal of Refractory Metals and Hard Materials, 2018, 72: 5155.
[93] [93] SYCHEV A E, GORSHKOV V A, KARPOV A V, et al. Synthesis and properties of the composite material based on a (V, Cr)AlC solid solution[J]. Physics of Metals and Metallography, 2021, 122(3): 286292.
[94] [94] HALIM J, CHARTIER P, BASYUK T, et al. Structure and thermal expansion of (Crx, V1-x)n+1AlCn phases measured by Xray diffraction[J]. Journal of the European Ceramic Society, 2017, 37(1): 1521.
[95] [95] YU W, MAUCHAMP V, CABIOC’H T, et al. Solid solution effects in the Ti2Al(CxNy) MAX phases: synthesis, microstructure, electronic structure and transport properties[J]. Acta Materialia, 2014, 80: 421434.
[96] [96] ZHANG X, LI Y B, CHEN K, et al. Tailoring MAX phase magnetic property based on Msite and Asite double solid solution[J]. Journal of Inorganic Materials, 2021, 36(12): 1247.
[97] [97] TUNCA B, LAPAUW T, DELVILLE R, et al. Synthesis and characterization of double solid solution (Zr, Ti)2(Al, Sn)C MAX phase ceramics[J]. Inorganic Chemistry, 2019, 58(10): 66696683.
[98] [98] TUNCA B, HUANG S G, GOOSSENS N, et al. Chemically complex double solid solution MAX phasebased ceramics in the (Ti, Zr, Hf, V, Nb)(Al, Sn)C system[J]. Materials Research Letters, 2022, 10(2): 5261.
[99] [99] CHEN Z H, CHONG H, SUN S L, et al. Synthesis and characterizations of solidsolution iMAX phase (W1/3Mo1/3R1/3)2AlC (R=Gd, Tb, Dy, Ho, Er and Y) and derivated iMXene with improved electrochemical properties[J]. Scripta Materialia, 2022, 213: 114596.
[100] [100] CHEN K, CHEN Y H, ZHANG J N, et al. Mediumentropy (Ti, Zr, Hf)2SC MAX phase[J]. Ceramics International, 2021, 47(6): 75827587.
[101] [101] LUO W, LIU Y, WANG C Y, et al. Molten salt assisted synthesis and electromagnetic wave absorption properties of (V1-x-yTixCry)2AlC solid solutions[J]. Journal of Materials Chemistry C, 2021, 9(24): 76977705.
[102] [102] LIU C, YANG Y Y, ZHOU Z F, et al. (Ti0.2V0.2Cr0.2Nb0.2Ta0.2)2AlC(Ti0.2V0.2Cr0.2Nb0.2Ta0.2)2C highentropy ceramics with low thermal conductivity[J]. Journal of the American Ceramic Society, 2022, 105(4): 27642771.
[103] [103] DU Z G, WU C, CHEN Y C, et al. Highentropy atomic layers of transitionmetal carbides (MXenes)[J]. Advanced Materials, 2021, 33(39): 2101473.
[104] [104] QIN Y, XIONG T, ZHAO T, et al. Mechanical properties and wear behavior of Tin+1(Al, A)Cn (A=Ga, In, Sn, n=1, 2) via quasihighentropy of single atomic thick A layer[J]. Ceramics International, 2021, 47(9): 1264112650.
[105] [105] LI Y B, LU J, LI M, et al. Multielemental singleatomthick A layers in nanolaminated V2(Sn, A) C (A=Fe, Co, Ni, Mn) for tailoring magnetic properties[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(2): 820825.
[106] [106] TUNCA B, LAPAUW T, CALLAERT C, et al. Compatibility of Zr2AlC MAX phasebased ceramics with oxygenpoor, static liquid leadbismuth eutectic[J]. Corrosion Science, 2020, 171: 108704.
[107] [107] LAI C C, PETRUHINS A, LU J, et al. Thermally induced substitutional reaction of Fe into Mo2GaC thin films[J]. Materials Research Letters, 2017, 5(8): 533539.
[108] [108] MA W S, WANG M, YI Q J, et al. A new Ti2V0.9Cr0.1C2Tx MXene with ultrahigh gravimetric capacitance[J]. Nano Energy, 2022, 96: 107129.
[109] [109] CAI L P, HUANG Z Y, HU W Q, et al. Dry sliding behaviors and friction surface characterization of Ti3Al0.8Si0.2Sn0.2C2 solid solution against S45C steel[J]. Ceramics International, 2019, 45(2): 21032110.
[110] [110] CAI L P, HUANG Z Y, HU W Q, et al. Fabrication and microstructure of a new ternary solid solution of Ti3Al0.8Si0.2Sn0.2C2 with high solid solution strengthening effect[J]. Ceramics International, 2018, 44(8): 95939600.
[111] [111] GRISERI M, TUNCA B, HUANG S G, et al. Tabased 413 and 211 MAX phase solid solutions with Hf and Nb[J]. Journal of the European Ceramic Society, 2020, 40(5): 18291838.
[112] [112] TAN Y Q, XIA Y H, TENG Z, et al. Synthesis and enhanced mechanical properties of compositionally complex MAX phases[J]. Journal of the European Ceramic Society, 2021, 41(8): 46584665.
[113] [113] ZHOU J, TAO Q Z, AHMED B, et al. Highentropy laminate metal carbide (MAX phase) and its twodimensional derivative MXene[J]. Chemistry of Materials, 2022, 34(5): 20982106.
[114] [114] HADI M A, NAQIB S H, CHRISTOPOULOS S R G, et al. Mechanical behavior, bonding nature and defect processes of Mo2ScAlC2: a new ordered MAX phase[J]. Journal of Alloys and Compounds, 2017, 724: 11671175.
Get Citation
Copy Citation Text
SHI Yinlai, HU Qianku, JI Yuhuan, WANG Zhe, LI Dandan, WANG Libo, ZHOU Aiguo. Research Progress of Layered Ternary MAX Phase Solid Solutions[J]. Journal of Synthetic Crystals, 2022, 51(12): 2164
Category:
Received: Aug. 8, 2022
Accepted: --
Published Online: Feb. 18, 2023
The Author Email: SHI Yinlai (2113503387@qq.com)
CSTR:32186.14.