Laser & Optoelectronics Progress, Volume. 55, Issue 11, 111011(2018)

Three-Dimensional Segmentation of Brain Tumors in Magnetic Resonance Imaging Based on Improved Continuous Max-Flow

Lu Ren1, Qiang Li1、*, Xin Guan1, and Jie Ma2
Author Affiliations
  • 1 School of Microelectronics, Tianjin University, Tianjin 300072, China
  • 2 Tianjin Weishen Technology Company Limited, Tianjin 300384, China
  • show less
    Figures & Tables(12)
    Framework of the segmentation algorithm proposed
    Four types of brain tumor MRI images and the expert segmentation result
    Three types of brain tumor MRI images and the fused image. (a) Flair; (b) T1C; (c) T2; (d) fused image
    Histograms of three types of brain tumor MRI images and the fused image. (a) Flair; (b) T1C; (c) T2; (d) fused image
    Main steps of HGG 3D segmentation. (a) Under-segmented image; (b) accurate-segmented image; (c) final segmented result; (d) gold standard
    Main steps of LGG 3D segmentation. (a) Under-segmented image; (b) accurate-segmented image; (c) final segmented result; (d) gold standard
    • Table 1. Processing result of 45 images for different ratios

      View table

      Table 1. Processing result of 45 images for different ratios

      Fusion ratio1∶0∶00∶1∶00∶0∶18∶0∶27∶1∶27∶0∶36∶0∶46∶1∶35∶2∶35∶1∶4
      Dice0.82770.20660.69890.83290.83680.85020.86000.86190.86080.8958
      Precision0.89650.48790.76870.93160.93490.92690.92460.90780.90140.9359
      Recall0.75450.37860.57580.76710.78200.80620.80040.84450.86010.8626
    • Table 2. Segmentation of the HGG in various directions

      View table

      Table 2. Segmentation of the HGG in various directions

      DirectionUnder-segmented imageAccurate-segmented imageFinal segmented imageGold standard
      Horizontalplane
      Coronalplane
      Sagittalplane
      Dice0.86450.90070.9449
    • Table 3. Segmentation of the LGG in various directions

      View table

      Table 3. Segmentation of the LGG in various directions

      DirectionUnder-segmented imageAccurate-segmented imageFinal segmented imageGold standard
      Horizontalplane
      Coronalplane
      Sagittalplane
      Dice0.86620.90240.9038
    • Table 4. Segmentation performance evaluation of improved FCM segmentation method

      View table

      Table 4. Segmentation performance evaluation of improved FCM segmentation method

      MethodDicePrecisionRecallTime /min
      FCM0.880.920.830.4
      Proposed0.900.940.860.3
    • Table 5. Index statistics of HGG, LGG and all data

      View table

      Table 5. Index statistics of HGG, LGG and all data

      IndexStatisticsHGGLGGAll data
      DiceMax value0.94490.90380.9449
      Min value0.85210.85530.8521
      Mean0.89590.88480.8948
      Standard deviation0.02510.02210.0240
      PrecisionMax value0.98610.99220.9922
      Min value0.82010.80340.8034
      Mean0.93590.92680.9351
      Standard deviation0.04700.07330.0492
      RecallMax value0.97870.94120.9787
      Min value0.75820.75160.7582
      Mean0.86270.85430.8619
      Standard deviation0.04950.06810.0508
    • Table 6. Segmentation performance evaluation of three segmentation methods

      View table

      Table 6. Segmentation performance evaluation of three segmentation methods

      MethodDicePrecisionRecallTime /min
      Zhao et al.[9]0.870.930.863
      Pereria et al.[10]0.880.890.887.5
      Proposed0.900.940.860.3
    Tools

    Get Citation

    Copy Citation Text

    Lu Ren, Qiang Li, Xin Guan, Jie Ma. Three-Dimensional Segmentation of Brain Tumors in Magnetic Resonance Imaging Based on Improved Continuous Max-Flow[J]. Laser & Optoelectronics Progress, 2018, 55(11): 111011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: May. 4, 2018

    Accepted: Jun. 8, 2018

    Published Online: Aug. 14, 2019

    The Author Email: Qiang Li (liqiang@tju.edu.cn)

    DOI:10.3788/LOP55.111011

    Topics