Laser & Optoelectronics Progress, Volume. 61, Issue 14, 1437010(2024)

Lightweight Network-Based End-to-End Pose Estimation for Noncooperative Targets

Jiahui Liu1,2、*, Yonghe Zhang1,2, and Wenxiu Zhang1
Author Affiliations
  • 1Innovation Academy for Microsatellites, Chinese Academy of Sciences, Shanghai 201304, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(17)
    Architecture of lightweight space target pose estimation network
    Comparison of normal convolution and depthwise separable convolution. (a) Ordinary convolution; (b) depth-wise convolution; (c) point-wise convolution
    Efficient channel attention structure
    Basic building block of the network
    Comparison of nonlinear activation functions
    Examples of URSO dataset
    Pose loss plot
    Visual display of location estimation
    Visualization display of orientation estimation. (a) Visualization of orientation ground truth; (b) visualization of predicted orientation value; (c) visualization of Euler angle estimation
    • Table 1. Experimental results of fine-tuning Δ

      View table

      Table 1. Experimental results of fine-tuning Δ

      ΔΜAverage orientation error /(°)
      TrainTest
      3167.626.0
      6165.55.8
      9169.312.4
    • Table 2. Influence of the number of intervals dividing the angular dimension

      View table

      Table 2. Influence of the number of intervals dividing the angular dimension

      MNetwork parameters /106Average orientation error /(°)
      86.110.01
      127.66.75
      1610.65.78
      2423.15.65
    • Table 3. Comparison of direct regression orientation and soft assignment coding

      View table

      Table 3. Comparison of direct regression orientation and soft assignment coding

      MethodNetwork parameters /106Average location error /mAverage orientation error /(°)
      Direct regression5.40.5746.1
      Soft assignment coding10.60.545.78
    • Table 4. Comparison of experiment 1

      View table

      Table 4. Comparison of experiment 1

      MethodNetwork parameters /106Average location error /mAverage orientation error /(°)Inference time per image /ms
      Method in Ref. [2545.51.1913.7045
      LSPENet10.60.545.7839
    • Table 5. Comparison of experiment 2

      View table

      Table 5. Comparison of experiment 2

      MethodNetwork parameters/106Average location error/mAverage orientation error/(°)Inference time per image/ms
      Method in Ref. [245000.444.047
      LSPENet10.60.545.7839
    • Table 6. Performance comparison of different network models

      View table

      Table 6. Performance comparison of different network models

      MethodAverage location error/mAverage orientation error/(°)
      Deep-6DPose1.313.6
      Method in Ref. [270.859.7
      LSPENet0.545.78
    • Table 7. Results of ablation experiments

      View table

      Table 7. Results of ablation experiments

      ECAAverage location error /mAverage orientation error /(°)
      0.768.90
      0.545.78
    • Table 8. Pose error on different datasets

      View table

      Table 8. Pose error on different datasets

      DatasetAverage location error /mAverage orientation error /(°)
      Soyuz_easy0.545.78
      Soyuz_hard0.726.90
      Dragon_hard0.9510.40
      SPEED0.365.10
    Tools

    Get Citation

    Copy Citation Text

    Jiahui Liu, Yonghe Zhang, Wenxiu Zhang. Lightweight Network-Based End-to-End Pose Estimation for Noncooperative Targets[J]. Laser & Optoelectronics Progress, 2024, 61(14): 1437010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Nov. 1, 2023

    Accepted: Jan. 8, 2024

    Published Online: Jul. 8, 2024

    The Author Email: Jiahui Liu (ll9276190616@163.com)

    DOI:10.3788/LOP232418

    CSTR:32186.14.LOP232418

    Topics