Infrared and Laser Engineering, Volume. 51, Issue 3, 20220104(2022)
Advances in mid-infrared integrated photonic sensing system (Invited)
[1] Zou Y, Chakravarty S, Chung C-J, et al. Mid-infrared silicon photonic waveguides and devices [Invited][J]. Photonics Research, 6, 254-276(2018).
[2] Lin H, Sun B, Ma H, et al. Review of mid-infrared on-chip integrated photonics (Invited)[J]. Infrared and Laser Engineering, 51, 20211111(2022).
[3] Ma H, Yang H, Tang B, et al. Passive devices at 2 μm wavelength on 200 mm CMOS compatible silicon photonics platform [Invited][J]. Chinese Optics Letters, 19, 071301(2021).
[4] [4] Lambrecht A, Schmitt K. infrared gassensing systems applications [C] infrared Optoelectronics, 2020: 661715.
[5] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).
[6] Neetesh S, Alvaro C B, Hudson D, et al. Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide[J]. Optics Letters, 41, 5776-5779(2016).
[7] Dong L, Tittel F K, Li C, et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing[J]. Optics Express, 24, A528-A535(2016).
[8] Ottonello-Briano F, Errando-herranz C, Rdjegrd H, et al. Carbon dioxide absorption spectroscopy with a mid-infrared silicon photonic waveguide[J]. Optics Letters, 45, 109-112(2019).
[9] Wang Y, Shu H, Han X. High-precision silicon-based integrated optical temperature sensor[J]. Chinese Optics, 14, 1355-1361(2021).
[10] Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene[J]. Science, 349, 165-168(2015).
[11] Moser H, Pölz W, Waclawek J P, et al. Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream[J]. Analytical and Bioanalytical Chemistry, 409, 729-739(2016).
[12] Vainio M, Halonen L. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy[J]. Physical Chemistry Chemical Physics, 18, 4266-4294(2016).
[13] Kim S. Novel air temperature measurement using midwave hyperspectral Fourier transform infrared imaging in the carbon dioxide absorption band[J]. Remote Sensing, 12, 1860(2020).
[14] Yang S, Yan X, Qin H, et al. Mid-infrared compressive hyperspectral imaging[J]. Remote Sensing, 13, 741(2021).
[15] Stanley R. Plasmonics in the mid-infrared[J]. Nature Photon, 6, 409-411(2012).
[16] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs[J]. Nature Photonics, 13, 158-169(2019).
[17] Li D, Zhou H, Hui X, et al. Multifunctional chemical sensing platform based on dual-resonant infrared plasmonic perfect absorber for on-chip detection of poly (ethyl cyanoacrylate)[J]. Advanced Science, 8, 2101879(2021).
[18] Henderson B, Khodabakhsh A, Metsälä M, et al. Laser spectroscopy for breath analysis: towards clinical implementation[J]. Applied Physics B, 124, 161(2018).
[19] Soref R. Mid-infrared photonics in silicon and germanium[J]. Nature Photonics, 4, 495-497(2010).
[20] Chen Q, Nan X, Liang W, et al. Research progress of on-chip integrated optical sensing technology (Invited)[J]. Infrared and Laser Engineering, 51, 20210671(2022).
[21] Mashanovich G Z, Mitchell C J, Penades J S, et al. Germanium mid-infrared photonic devices[J]. Journal of Lightwave Technology, 35, 624-630(2017).
[22] Lin P T, Jung H, Kimerling L C, et al. Low-loss aluminium nitride thin film for mid-infrared microphotonics[J]. Laser & Photonics Reviews, 8, L23-L28(2014).
[23] Ma P, Choi D-Y, Yu Y, et al. Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared[J]. Optics Express, 21, 29927-29937(2013).
[24] Lin H, Song Y, Huang Y, et al. Chalcogenide glass-on-graphene photonics[J]. Nature Photonics, 11, 798-805(2017).
[25] Mizaikoff B. Waveguide-enhanced mid-infrared chem/bio sensors[J]. Chemical Society Reviews, 42, 8683-8699(2013).
[26] Hu T, Dong B, Luo X, et al. Silicon photonic platforms for mid-infrared applications [Invited][J]. Photonics Research, 5, 417-430(2017).
[27] Liu X, Cheng S, Liu H, et al. A survey on gas sensing technology[J]. Sensors, 12, 9635-9665(2012).
[28] Jane H, Ralph P T. Optical gas sensing: A review[J]. Measurement Science & Technology, 24(1), 012004(2013).
[29] Dinh T V, Choi I Y, Son Y S, et al. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction[J]. Sensors and Actuators, B Chemical, 231, 529-538(2016).
[30] Cetin A E, Coskun A, Galarreta B C, et al. Handheld high-throughput plasmonic biosensor using computational on-chip imaging[J]. Light: Science & Applications, 3, e122(2014).
[31] Brolo A. Plasmonics for future biosensors[J]. Nature Photonics, 6, 709-713(2012).
[32] Tombez L, Zhang E J, Orcutt J S, et al. Methane absorption spectroscopy on a silicon photonic chip[J]. Optica, 4, 1322-1325(2017).
[33] Jágerská J, Jouy P, Tuzson B, et al. Simultaneous measurement of NO and NO2 by dual-wavelength quantum cascade laser spectroscopy[J]. Optics Express, 23, 1512-1522(2015).
[34] Schwarz B, Reininger P, Ristanić D, et al. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures[J]. Nature Communications, 5, 4085(2014).
[35] Shankar R, Leijssen R, Bulu I, et al. Mid-infrared photonic crystal cavities in silicon[J]. Optics Express, 19, 5579-5586(2011).
[36] Liu Q, Ramirez J M, Vakarin V, et al. Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited][J]. Optical Materials Express, 8, 1305-1312(2018).
[37] Li W, Anantha P, Lee K H, et al. Spiral waveguides on germanium-on-silicon nitride platform for mid-IR sensing applications[J]. IEEE Photonics Journal, 10, 1-7(2018).
[38] Kang J, Takenaka M, Takagi S. Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits[J]. Optics Express, 24, 11855-11864(2016).
[39] Xiao T-H, Zhao Z, Zhou W, et al. Mid-infrared high-Q germanium microring resonator[J]. Optics Letters, 43(12): 2885-2888(2018).
[40] WU J, YUE G, CHEN W, et al. On-chip optical gas sensors based on group-IV materials[J]. ACS Photonics, 7, 2923-2940(2020).
[41] Wang C, Yin L, Zhang L, et al. Metal oxide gas sensors: Sensitivity and influencing factors[J]. Sensors, 10(3), 2088-2106(2010).
[42] Chang Y-c, Wägli P, Paeder V, et al. Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip[J]. Lab on a Chip, 12, 3020-3023(2012).
[43] Lin P, Singh V, Hu J, et al. Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides[J]. Lab on a Chip, 13(11): 2161-2166(2013).
[44] [44] Zou Y, Vijayraghavan K, Wray P, et al. Monolithically integrated quantum cade lasers, detects dielectric waveguides at 9.5µm f farinfrared labonchip chemical sensing[C]Proceedings of the CLEO, 2015: STu4I.2.
[45] Hale G M, Querry M R. Optical constants of water in the 200-nm to 200-microm wavelength region[J]. Applied Optics, 12, 555-563(1973).
[46] Nedeljkovic M, Khokhar A Z, Hu Y, et al. Silicon photonic devices and platforms for the mid-infrared[J]. Optical Materials Express, 3, 1205-1214(2013).
[47] Penades J S, Khokhar A, Nedeljkovic M, et al. Low-loss mid-infrared SOI slot waveguides[J]. IEEE Photonics Technology Letters, 27, 1197-1199(2015).
[48] Lin P T, Kwok S W, Lin H Y G, et al. Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing[J]. Nano Letters, 14(1), 231-238(2014).
[49] Patimisco P, Spagnolo V, Vitiello M S, et al. Low-loss hollow waveguide fibers for mid-infrared quantum cascade laser sensing applications[J]. Sensors, 13, 1329-1340(2013).
[50] Zheng S, Cai H, Xu L, et al. Silicon substrate-integrated hollow waveguide for miniaturized optical gas sensing[J]. Photonics Research, 10, 261-268(2022).
[51] Petruci J, Wilk A, Cardoso A A, et al. A hyphenated preconcentrator-infrared-hollow-waveguide sensor system for N2O sensing[J]. Scientific Reports, 8, 5909(2018).
[52] Vasiliev A, Malik A, Muneeb M, et al. On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators[J]. ACS Sensors, 1(11), 1301-1307(2016).
[53] Mario L N, Benedetto T, Tommaso M, et al. Recent advances in gas and chemical detection by Vernier effect-based photonic sensors[J]. Sensors, 14, 4831-4855(2014).
[54] Jin L, Li M, He J J. Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect[J]. Optics Communications, 284, 156-159(2011).
[55] Ren L, Wu X, Li M, et al. Ultrasensitive label-free coupled optofluidic ring laser sensor[J]. Optics Letters, 37, 3873-3875(2012).
[56] Yebo N A, Lommens P, Hens Z, et al. An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film[J]. Optics Express, 18, 11859-11866(2010).
[57] Stievater T H, Pruessner M W, Park D, et al. Trace gas absorption spectroscopy using functionalized microring resonators[J]. Optics Letters, 39, 969-972(2014).
[58] Troia B, Khokhar A Z, Nedeljkovic M, et al. Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared[J]. Optics Express, 22, 23990-24003(2014).
[59] Chang Y, Dong B, Ma Y, et al. Vernier effect-based tunable mid-infrared sensor using silicon-on-insulator cascaded rings[J]. Optics Express, 28, 6251-6260(2020).
[60] Carlborg C F, Gylfason K B, Kamierczak A, et al. A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips[J]. Lab on a Chip, 10, 281-290(2010).
[61] Ksendzov A, Lin Y. Integrated optics ring-resonator sensors for protein detection[J]. Optics Letters, 30, 3344-3346(2005).
[62] Smith C J, Shankar R, Laderer M, et al. Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators[J]. Optics Express, 23, 5491-5499(2015).
[63] Chen Y, Lin H, Hu J, et al. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing[J]. ACS Nano, 8, 6955-6961(2014).
[64] Lai W-C, Chakravarty S, Wang X, et al. Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water[J]. Applied Physics Letters, 98, 023304(2011).
[65] Lai W-C, Chakravarty S, Zou Y, et al. Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy[J]. Optics Letters, 38, 3799-3802(2013).
[66] Lai W-C, Chakravarty S, Wang X, et al. On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide[J]. Optics Letters, 36, 984-986(2011).
[67] Iqbal M, Gleeson M A, Spaugh B, et al. Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 16, 654-661(2010).
[68] Skivesen N, Têtu A, Kristensen M, et al. Photonic-crystal waveguide biosensor[J]. Optics Express, 15, 3169-3176(2007).
[69] [69] Chakravarty S, Zou Y, Yan H, et al. Silicon chip integrated photonic senss f biological chemical sensing [C]SPIE, 2016.
[70] Kraeh C, Martinez Hurtado J L, Popescu A, et al. Slow light enhanced gas sensing in photonic crystals[J]. Optical Materials, 76, 106-110(2018).
[71] Zou Y, Chakravarty S, Wray P, et al. Experimental demonstration of propagation characteristics of mid-infrared photonic crystal waveguides in silicon-on-sapphire[J]. Optics Express, 23, 6965-6975(2015).
[72] Zou Y, Chakravarty S, Chen R T. Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities[J]. Applied Physics Letters, 107, 081109(2015).
[73] Zou Y, Chakravarty S, Wray P, et al. Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection[J]. Sensors and Actuators B:Chemical, 221, 1094-1103(2015).
[74] Rostamian A, Madadi-kandjani E, Dalir H, et al. Towards lab-on-chip ultrasensitive ethanol detection using photonic crystal waveguide operating in the mid-infrared[J]. Nanophotonics, 10, 1675-1682(2021).
[75] [75] Nazabal V, Baudet E, Chahal R, et al. Chalcogenide glasses f IR photonic applications [C]2014 IEEE Photonics Society Summer Topical Meeting Series, 2014.
[76] Mittal V, Nedeljkovic M, Rowe D J, et al. Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopy[J]. Optics Letters, 43, 2913-2916(2018).
[77] Gutierrez-arroyo A, Baudet E, Bodiou L, et al. Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared[J]. Optics Express, 24, 23109-23117(2016).
[78] Baudet E, Gutierrez-arroyo A, Baillieul M, et al. Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater[J]. Advanced Device Materials, 3, 23-29(2017).
[79] Lin P T, Jung H, Kimerling L C, et al. Low-loss aluminium nitride thin film for mid-infrared microphotonics[J]. Laser & Photonics Reviews, 8, L23-L28(2014).
[80] [80] Jung H, Poot Menno, Tang H X. Inresonat variation of waveguide crosssections f dispersion control of aluminum nitride microrings [J]. Optics Express, 2015, 23(24): 3063430640.
[81] Pernice W, Xiong C, Schuck C, et al. High-Q aluminum nitride photonic crystal nanobeam cavities[J]. Applied Physics Letters, 100, 091105(2012).
[82] Dong B, Luo X, Zhu S, et al. Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics[J]. Optics Letters, 44, 73-76(2019).
[83] Belt M, Davenport M L, Bowers J E, et al. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates[J]. Optica, 4, 532-536(2017).
[84] Muttalib M F A, Chen R, Pearce S, et al. Anisotropic Ta2O5 waveguide etching using inductively coupled plasma etching[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 32, 041304(2014).
[85] Vlk M, Datta A, Alberti S, et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy[J]. Light: Science & Applications, 10, 26(2021).
[86] Chaneliere C, Autran J L, Devine R A B, et al. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications[J]. Materials Science and Engineering: R: Reports, 22, 269-322(1998).
[87] Lee C C, Tien C L, Sheu W S, et al. An apparatus for the measurement of internal stress and thermal expansion coefficient of metal oxide films[J]. Review of Scientific Instruments, 72, 2128-2133(2001).
[88] Wu C-L, Hung Y, Fan R, et al. Tantalum pentoxide (Ta2O5) based athermal micro-ring resonator[J]. OSA Continuum, 2, 1198-1206(2019).
[89] Saygin-Hinczewski D, Koc K, Sorar I, et al. Optical and structural properties of Ta2O5–CeO2 thin films[J]. Solar Energy Materials and Solar Cells, 91, 1726-1732(2007).
[90] Pi M, Zheng C, Zhao H, et al. Mid-infrared ChG-on-MgF2 waveguide gas sensor based on wavelength modulation spectroscopy[J]. Optics Letters, 46, 4797-4800(2021).
[91] Li C, Zheng C, Dong L, et al. Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34-μm continuous-wave interband cascade laser[J]. Applied Physics B, 122, 185(2016).
[92] Jin T, Lin H, Tiwald T, et al. Flexible mid-infrared photonic circuits for real-time and label-free hydroxyl compound detection[J]. Scientific Reports, 9, 4153(2019).
[93] Chang C, Lin H, Lai M, et al. Flexible localized surface plasmon resonance sensor with metal-insulator-metal nanodisks on PDMS substrate[J]. Scientific Reports, 8, 11812(2018).
[94] Neutens P, Lagae L, Borghs G, et al. Plasmon filters and resonators in metal-insulator-metal waveguides[J]. Optics Express, 20, 3408-3423(2012).
[95] Wei Q, Xiao J, Yang D, et al. Ultra-compact electro-optic modulator based on alternative plasmonic material[J]. Appled Optics, 60, 5252-5257(2021).
[96] Ansell D, Radko I P, Han Z, et al. Hybrid graphene plasmonic waveguide modulators[J]. Nature Communications, 6, 8846(2015).
[97] Zhang T, Shan F. Development and application of surface plasmon polaritons on optical amplification[J]. Journal of Nanomaterials, 7-16(20147).
[98] Izadi M A, Nouroozi R. Adjustable propagation length enhancement of the surface plasmon polariton wave via phase sensitive optical parametric amplification[J]. Scientific Reports, 8, 15495(2018).
[99] Kang T, Fan B, Qin J, et al. Mid-infrared active metasurface based on Si/VO2 hybrid meta-atoms[J]. Photonics Research, 10, 373-380(2022).
[100] Adato R, Altug H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas[J]. Nature Communications, 4, 2154(2013).
[101] Limaj O, Etezadi D, Wittenberg N J, et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes[J]. Nano Letters, 16, 1502-1508(2016).
[102] Zhou H, Hui X, Li D, et al. Metal-organic framework‐surface‐enhanced infrared absorption platform enables simultaneous on‐chip sensing of greenhouse gases[J]. Advanced Science, 7(20): 2001173(2020).
[103] Wei J, Li Y, Chang Y, et al. Ultrasensitive transmissive infrared spectroscopy via loss engineering of metallic nanoantennas for compact devices[J]. ACS Appl Mater Interfaces, 11, 47270-47278(2019).
[104] Xu J, Ren Z, Dong B, et al. Nanometer-scale heterogeneous interfacial sapphire wafer bonding for enabling plasmonic-enhanced nanofluidic mid-infrared spectroscopy[J]. ACS Nano, 14, 12159-12172(2020).
[105] Chang Y, Hasan D, Dong B, et al. All-dielectric surface-enhanced infrared absorption-based gas sensor using guided resonance[J]. ACS Appl Mater Interfaces, 10, 38272-38279(2018).
[106] Neubrech F, Pucci A, Cornelius T W, et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection[J]. Physical Review Letters, 101, 157403(2008).
[107] Cho N J, Frank C W, Kasemo B, et al. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates[J]. Nature Protocols, 5, 1096-1106(2010).
[108] Rodrigo D, Tittl A, Ait-bouziad N, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces[J]. Nature Communications, 9, 2160(2018).
[109] Maß T W W, Taubner T. Incident angle-tuning of infrared antenna array resonances for molecular sensing[J]. ACS Photonics, 2, 1498-1504(2015).
[110] Agrawal A, Singh A, Yazdi S, et al. Resonant coupling between molecular vibrations and localized surface plasmon resonance of faceted metal oxide nanocrystals[J]. Nano Letters, 17, 2611-2620(2017).
[111] Baumberg J J, Aizpurua J, Mikkelsen M H, et al. Extreme nanophotonics from ultrathin metallic gaps[J]. Nature Materials, 18, 668-678(2019).
[112] Akselrod G M, Argyropoulos C, Hoang T B, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J]. Nature Photonics, 8, 835-840(2014).
[113] Chen X, Wang C, Yao Y, et al. Plasmonic vertically coupled complementary antennas for dual-mode infrared molecule sensing[J]. Acs Nano, 11, 8034-8046(2017).
[114] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Lett, 10, 2342-2348(2010).
[115] Brown L V, Yang X, Zhao K, et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA)[J]. Nano Letters, 15, 1272-1280(2015).
[116] Dong L, Yang X, Zhang C, et al. Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy[J]. Nano Letters, 17(9): 5768–5774(2017).
[117] Miao X, Lingyue Y, Wu Y, et al. High-sensitivity nanophotonic sensors with passive trapping of analyte molecules in hot spots[J]. Light: Science and Applications, 10, 5(2021).
[118] Chen J, Xiong Y, Xu F, et al. Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology[J]. Light:Science & Applications, 10 (1), 78(2021).
[119] Zhu Y, Li Z, Hao Z, et al. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface[J]. Light: Science & Applications, 7, 67(2018).
[120] Yang Z, Albrow-Owen T, Cai W, et al. Miniaturization of optical spectrometers[J]. Science, 371, eabe0722(2021).
[121] Mishchenko M I, Hovenier J W. Depolarization of light backscattered by randomly oriented nonspherical particles[J]. Optics Letters, 20, 1356-1358(1995).
[122] Naumann D, Helm D, Labischinski H. Microbiological characterizations by FT-IR spectroscopy[J]. Nature, 351, 81-82(1991).
[123] [123] Rosema A. Potential of chlophyll fluescence f remote sensing of canopy photosynthesis[C]Proceedings of the Proc OECD Wkshop on Remote Sensing f Agriculture f the Environment, 2002.
[124] Lavchiev V M, Jakoby B. Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 452-463(2016).
[125] Hasan M, Rad M, Hasan G M, et al. Ultra-high resolution wideband On-chip spectrometer[J]. IEEE Photonics Journal, 12, 1-17(2020).
[126] Manley M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials[J]. Chemical Society Reviews, 43, 8200-8214(2014).
[127] Ouzounov D, Freund F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data[J]. Advances in Space Research, 33, 268-273(2004).
[128] Kita D M, Miranda B, Favela D, et al. High-performance and scalable on-chip digital Fourier transform spectroscopy[J]. Nature Communications, 9 (1), 4405(2018).
[129] Li A, Fainman Y. Integrated silicon Fourier transform spectrometer with broad bandwidth and ultra‐high resolution[J]. Laser & Photonics Reviews, 15, 2000358(2021).
[130] Lin Z, Dadalyan T, Bélanger-de Villers S, et al. Chip-scale full-Stokes spectropolarimeter in silicon photonic circuits[J]. Photonics Research, 8, 864-874(2020).
[131] Xia Z, Eftekhar A A, Soltani M, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators[J]. Optics Express, 19, 12356-12364(2011).
[132] Sarwar T, Cheekati S, Chung K, et al. On-chip optical spectrometer based on GaN wavelength-selective nanostructural absorbers[J]. Applied Physics Letters, 116, 081103(2020).
[133] Dinh T T D, González-Andrade D, Montesinos-Ballester M, et al. Silicon photonic on-chip spatial heterodyne Fourier transform spectrometer exploiting the Jacquinot's advantage[J]. Optics Letters, 46, 1341-1344(2021).
[134] González-Andrade D, Dinh T T D, Guerber S, et al. Broadband Fourier-transform silicon nitride spectrometer with wide-area multiaperture input[J]. Optics Letters, 46, 4021-4024(2021).
[135] Liu T, Fiore A. Designing open channels in random scattering media for on-chip spectrometers[J]. Optica, 7, 934-939(2020).
[136] Yuan S, Naveh D, Watanabe K, et al. A wavelength-scale black phosphorus spectrometer[J]. Nature Photonics, 15, 601-607(2021).
[137] Lee H S, Hwang G W, Seong T Y, et al. Design of mid-infrared filter array based on plasmonic metal nanodiscs array and its application to on-chip spectrometer[J]. Scientific Reports, 11, 12218(2021).
[138] Zhang L, Chen J, Ma C, et al. Research progress on on‐chip Fourier transform spectrometer[J]. Laser & Photonics Reviews, 15, 2100016(2021).
[139] Florjańczyk M, Cheben P, Janz S, et al. Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers[J]. Optics Express, 15, 18176-18189(2007).
[140] Nedeljkovic M, Velasco A V, Khokhar A Z, et al. Mid-infrared silicon-on-insulator fourier-transform spectrometer chip[J]. IEEE Photonics Technology Letters, 28, 528-531(2016).
[141] Heidari E, Xu X, Chung C-J, et al. On-chip Fourier transform spectrometer on silicon-on-sapphire[J]. Optics Letters, 44, 2883-2886(2019).
[142] Liu Q, Ramirez J M, Vakarin V, et al. Integrated broadband dual-polarization Ge-rich SiGe mid-infrared Fourier-transform spectrometer[J]. Optics Letters, 43, 5021-5024(2018).
[143] Montesinos-Ballester M, Liu Q, Vakarin V, et al. On-chip Fourier-transform spectrometer based on spatial heterodyning tuned by thermo-optic effect[J]. Scientific Reports, 9, 14633(2019).
[144] Fathy A, Sabry Y M, Nazeer S, et al. On-chip parallel Fourier transform spectrometer for broadband selective infrared spectral sensing[J]. Microsystems & Nanoengineering, 6 (1), 10(2020).
[145] KEIlmann F, Gohle C, Holzwarth R. Time-domain mid-infrared frequency-comb spectrometer[J]. Optics Letters, 29, 1542-1544(2004).
[146] Picqué N, Hänsch T W. Frequency comb spectroscopy[J]. Nature Photonics, 13, 146-157(2019).
[147] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy[J]. Optica, 3, 414-426(2016).
[148] Del’haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 450, 1214-1217(2007).
[149] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 361, eaan8083(2018).
[150] Yu M, Okawachi Y, Griffith A G, et al. Silicon-chip-based mid-infrared dual-comb spectroscopy[J]. Nature Communications, 9, 1869(2018).
[151] Lin T, Dutt A, Joshi C, et al. Broadband ultrahigh-resolution chip-scale scanning soliton dual-comb spectroscopy[J]. arXiv preprint, 200100869(2020).
[152] [152] Rogalski A. HgCdTe photodetects [C]infrared Optoelectronics, 2020: 235335.
[153] [153] Steenbergen E H. InAsSbbased photodetects [C]infrared Optoelectronics, 2020: 415453.
[154] Liu C, Guo J, Yu L, et al. Silicon/2D-material photodetectors: from near-infrared to mid-infrared[J]. Light: Science & Applications, 10, 123(2021).
[155] [155] Du W, Yu SQ. Group IV photonics using (Si)GeSn technology toward IR applications [C]infrared Optoelectronics, 2020: 493538.
[156] Chen J, Wang J, Li X, et al. Recent progress in improving the performance of infrared photodetectors via optical field manipulations[J]. Sensors, 22, 677(2022).
[157] Carmody M, Pasko J G, Edwall D, et al. Status of LWIR HgCdTe-on-silicon FPA technology[J]. Journal of Electronic Materials, 37, 1184-1188(2008).
[158] [158] Dhar N K, Tidrow M Z. Largefmat IRFPA development on silicon[C]SPIE, 2004: 5564.
[159] Wu J, Jiang Q, Chen S, et al. Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates[J]. ACS Photonics, 3, 749-753(2016).
[160] Jia B W, Tan K H, Loke W K, et al. Monolithic integration of insb photodetector on silicon for mid-infrared silicon photonics[J]. ACS Photonics, 5, 1512-1520(2018).
[161] Delli E, Letka V, Hodgson P D, et al. Mid-Infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon[J]. ACS Photonics, 6, 538-544(2019).
[162] Wu E, Wu D, Jia C, et al. In situ fabrication of 2 D WS2/Si type-II Heterojunction for self-powered broadband photodetector with response up to mid-infrared[J]. ACS Photonics, 6, 565-572(2019).
[163] Cong H, Xue C, Zheng J, et al. Silicon based GeSn p-i-n photodetector for SWIR detection[J]. IEEE Photonics Journal, 8, 1-6(2016).
[164] Tran H, Pham T, Margetis J, et al. Si-based GeSn photodetectors toward mid-infrared imaging applications[J]. ACS Photonics, 6, 2807-2815(2019).
[165] Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors[J]. Nature Photonics, 7, 888-891(2013).
[166] [166] Qu Z, Nedeljkovic M, Wu Y, et al. Waveguide integrated graphene infrared photodetect[C]SPIE, 2018: 10537.
[167] Huang L, Dong B, Guo X, et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications[J]. ACS Nano, 13, 913-921(2019).
Get Citation
Copy Citation Text
Lipeng Xia, Yuheng Liu, Peiji Zhou, Yi Zou. Advances in mid-infrared integrated photonic sensing system (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220104
Category: Special issue-Mid-infrared integrated optoelectronic technology
Received: Jan. 20, 2022
Accepted: Mar. 15, 2022
Published Online: Apr. 8, 2022
The Author Email: Peiji Zhou (zhoupj@shanghaitech.edu.cn)