Laser Technology, Volume. 45, Issue 1, 19(2021)

Dynamic photogrammetry network optimization for large wind turbine blades

FENG Wei1, DONG Mingli1、*, and SUN Peng2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(14)

    [1] [1] XU J J, CHEN Y N. The installed capacity of wind power in China is the first in the world for four consecutive years. The problems and countermeasures for the development of wind power industry to be solved[J]. China Economic Weekly, 2016(16): 80-81(in Chin-ese).

    [2] [2] GRIFFITH D T, MAYES R L, HUNTER P S. Excitation methods for a 60kW vertical axis wind turbine[M].New York, USA: Springer, 2011: 329-338.

    [3] [3] OSGOOD R, BIR G, MUTHA H, et al. Full-scale modal wind turbine tests: Comparing shaker excitation with wind excitation[M].New York,USA: Springer, 2011: 113-124.

    [4] [4] KONG C, BANG J, SUGIYAMA Y. Structural investigation of composite wind turbine blade considering various load cases and fatigue life[J]. Energy, 2005, 30(11): 2101-2114.

    [5] [5] TAMURA Y, MATSUI M, PAGNINI L C, et al. Measurement of wind-induced response of buildings using RTK-GPS[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12/15): 1783-1793.

    [6] [6] BREUER P, CHMIELEWSKI T, GRSKI P, et al. Application of GPS technology to measurement of displacement of high-rise structures due to weak winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(3): 223-230.

    [7] [7] NICKITOPOULOU A, PROTOPSALTI K, STIROS S. Monitoring dynamic and quasi-static deformations of large flexible engineering structures with GPS: Accuracy, limitations and promises[J]. Engineering Structures, 2006, 28(10): 1471-1482.

    [8] [8] CHEN Y, NI Y Q, YE X W, et al. Structural health monitoring of wind turbine blade using fiber Bragg grating sensors and fiber optic rotary joint[J]. Proceedings of the SPIE, 2012, 8345: 86-91.

    [9] [9] SCHROEDER K, ECKE W, APITZ J, et al. A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade[J]. Measurement Science and Technology, 2006, 17(5): 1167-1172.

    [10] [10] FRASER C S. Network design considerations for non-topographic photogrammetry[J]. Photogrammetric Engineering & Remote Sensing, 1984, 50(8): 1115-1126.

    [11] [11] OLAGUE G. Automated photogrammetric network design using genetic algorithms[J]. Photogrammetric Engineering & Remote Sensing, 2002, 68(5): 423-432.

    [12] [12] QIAO Y J, WANG H R, ZHAO Y J. Study on binocular vision measurement network layout for large curved surface parts[J]. Ch-inese Journal of Scientific Instrumen, 2015, 36(4): 913-918(in Chinese).

    [13] [13] CHEN J Y, DONG M L, WANG J, et al. Photogrammetric network design for large-scale trough concentrator surface measurement[J]. Renewable Energy Resources, 2016, 34(3): 353-359(in Chin-ese).

    [14] [14] LIU Y, XIAO Sh D, ZHANG R, et al. Initial estimation of digital image correlated deformation based on genetic algorithms[J]. Laser Technology, 2020, 44(1): 130-135(in Chinese).

    Tools

    Get Citation

    Copy Citation Text

    FENG Wei, DONG Mingli, SUN Peng. Dynamic photogrammetry network optimization for large wind turbine blades[J]. Laser Technology, 2021, 45(1): 19

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 12, 2020

    Accepted: --

    Published Online: Aug. 22, 2021

    The Author Email: DONG Mingli (dongml@bistu.edu.cn)

    DOI:10.7510/jgjs.issn.1001-3806.2021.01.004

    Topics