Acta Laser Biology Sinica, Volume. 30, Issue 5, 422(2021)

Optimized Expression and Purification of Influenza H3 Antigen in Pichia pastoris

CHEN Pu, LI Anna, TANG Yansong, LONG Haoyu, LIU Kunshan, and ZHOU Mian
Author Affiliations
  • [in Chinese]
  • show less
    References(22)

    [1] [1] PARRISH C R, KAWAOKA Y. The origins of new pandemic viruses: the acquisition of new host ranges by canine parvovirus and in?uenza A viruses[J]. Annual Review of Microbiology, 2005, 59(1): 553-586.

    [2] [2] TAUBENBERGER J K, KASH J C. In?uenza virus evolution, host adaptation, and pandemic formation[J]. Cell Host & Microbe, 2010, 7(6): 440-451.

    [4] [4] SKOWRONSKI D M. Low 2012-13 in?uenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses[J]. PLoS One, 2014, 9(3): e92153.

    [5] [5] CHEN T H, LIU W C, CHEN I C, et al. Recombinant hemagglutinin produced from Chinese hamster ovary stable cell clones and a PELC/CpG combination adjuvant for H7N9 subunit vaccine development[J]. Vaccine, 2019, 37(47): 6933-6941.

    [6] [6] COX M M, HOLLISTER J R. FluBlok, a next generation influenza vaccine manufactured in insect cells[J]. Biologicals, 2009, 37(3): 182-189.

    [7] [7] BUCKLAND B C. The development and manufacture of influenza vaccines[J]. Human Vaccines &Immunotherapeutics, 2015, 11(6): 1357-1360.

    [8] [8] D’AOUST M A, COUTURE M M, CHARLAND N, et al. The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza[J]. Plant Biotechnology Journal, 2010, 8(5): 607-619.

    [9] [9] D’AOUST M A, LAVOIE P O, COUTURE M M, et al. Influenza virus-like particles produced by transient expression in nicotianabenthamiana induce a protective immune response against a lethal viral challenge in mice[J]. Plant Biotechnology Journal, 2009, 6(9): 930-940.

    [10] [10] PILLET S, AUBIN é, TRéPANIER S, et al. A Plant-derived quadrivalent virus like particle influenza vaccine induces cross-reactive antibody and T cell response in healthy adults[J]. Clinical Immunology, 2016, 168: 72-87.

    [11] [11] SHOJI Y, PROKHNEVSKY A, LEFFET B, et al. Immunogenicity of H1N1 influenza virus-like particles produced in Nicotiana benthamiana[J]. Hum Vaccin Immunother, 2015, 11(1): 118-23.

    [12] [12] PILLET S, COUILLARD J, TRéPANIER S, et al. Immunogenicity and safety of a quadrivalent plant-derived virus like particle influenza vaccine candidate: two randomized Phase II clinical trials in 18 to 49 and ≥50 years old adults[J]. PLoS One, 2019, 14(6): e0216533.

    [13] [13] WANG M, JIANG S, WANG Y F. Recent advances in the production of recombinant subunit vaccines in Pichia pastoris[J]. Bioengineered, 2016, 7(3): 155-165.

    [14] [14] KOPERA E, ZDANOWSKI K, URANOWSKA K, et al. High-titre neutralizing antibodies to H1N1 influenza virus after mouse immunization with yeast expressed H1 antigen: a promising influenza vaccine candidate[J]. Journal of Immunology Research, 2019, 2019: 1-10.

    [15] [15] TULLER T, CARMI A, VESTSIGIAN K, et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation[J]. Cell, 2010, 141(2): 344-354.

    [16] [16] SPENCER P S, SILLER E, ANDERSON J F, et al. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies[J]. Journal of Molecular Biology, 2012, 422(3): 328-335.

    [17] [17] ZHOU M, GUO J, CHA J, et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ[J]. Nature, 2013, 495(7439): 111-115.

    [18] [18] ZHOU M, WANG T, FU J, et al. Non-optimal codon usage influences protein structure in intrinsically disordered regions[J]. Molecular Microbiology, 2016, 97(5): 974-987.

    [19] [19] ZHOU Z, DANG Y, ZHOU M, et al. Codon usage is an important determinant of gene expression levels largely through its effects on transcription[J]. Proceedings of the National Academy Sciences, 2016, 113(41): 117-125.

    [20] [20] ZHOU Z, DANG Y, ZHOU M, et al. Codon usage biases co-evolve with transcription termination machinery to suppress premature cleavage and polyadenylation[J]. Elife, 2018, 7: e33596.

    [21] [21] ATHMARAM T N, SARASWAT S, SANTHOSH S R, et al. Yeast expressed recombinant hemagglutinin protein of novel H1N1 elicits neutralising antibodies in rabbits and mice[J]. Virology Journal, 2011, 8(1): 524.

    [22] [22] ATHMARAM T N, SINGH A K, SARASWAT S, et al. A simple Pichia pastoris fermentation and downstream processing strategy for making recombinant pandemic swine origin influenza a virus hemagglutininprotein[J]. Journal of Industrial Microbiology, 2013, 40(2): 245-255.

    [24] [24] PIETRZAK M, MACIO?A A, ZDANOWSKI K, et al. An avian influenza H5N1 virus vaccine candidate based on the extracellular domain produced in yeast system as subviral particles protects chickens from lethal challenge[J]. Antiviral Research, 2016, 133: 242-249.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Pu, LI Anna, TANG Yansong, LONG Haoyu, LIU Kunshan, ZHOU Mian. Optimized Expression and Purification of Influenza H3 Antigen in Pichia pastoris[J]. Acta Laser Biology Sinica, 2021, 30(5): 422

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 14, 2021

    Accepted: --

    Published Online: Nov. 8, 2021

    The Author Email:

    DOI:10.3969/j.issn.1007-7146.2021.05.006

    Topics