Journal of Quantum Optics, Volume. 30, Issue 2, 20202(2024)

Angle of Arrival Estimation via Entangled State

SUN Xiao-cong*, TIAN Ya-li, GONG Ting, ZHOU Yue-ting, GUO Gu-qing, HE Xiao-hu, QIU Xuan-bing, and LI Chuan-liang
Author Affiliations
  • Shanxi Province Engineering Research Center of Precision Measurement and Online Detection Equipment, Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • show less
    References(22)

    [1] [1] GIOVANNETTI V, LLOYD S, MACCONE L. Advances in quantum metrology[J]. Nature Photonics, 2011, 5:222‒229. DOI: 10.1038/nphoton.2011.35.

    [2] [2] PEZZ L, SMERZI A, OBERTHALER M K, et al. Quantum metrology with nonclassical states of atomic ensembles[J]. Reviews of Modern Physics, 2018, 90(3):035005. DOI: 10.1103/RevModPhys.90.035005.

    [3] [3] CAVES C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 1981, 23(8):1693‒1708. DOI: 10.1103/PhysRevD.23.1693.

    [4] [4] TSE M, YU H, KIJBUNCHOO N, et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy[J]. Physical Review Letters, 2019, 123(23):231107. DOI: 10.1103/PhysRevLett.123.231107.

    [5] [5] WOLFGRAMM F, CER A, BEDUINI F A, et al. Squeezed-light optical magnetometry[J]. Physical Review Letters, 2010, 105:053601. DOI: 10.1103/PhysRevLett.105.053601.

    [6] [6] TAYLOR M, JANOUSEK J, DARIA V, et al. Biological measurement beyond the quantum limit[J]. Nature Photon, 2013, 7:229‒233. DOI: 10.1038/nphoton.2012.346.

    [7] [7] LOW G H, YODER T J, CHUANG I L. Quantum imaging by coherent enhancement[J]. Physical Review Letters, 2015, 114(10):100801. DOI: 10.1103/PhysRevLett.114.100801.

    [8] [8] LI B, BLEK J, HOFF U B, LARS S, et al. Quantum enhanced optomechanical magnetometry[J]. Optica, 2018, 5:850‒856. DOI: 10.1364/OPTICA.5.000850.

    [9] [9] AASI J, ABADIE J, ABBOTT B P, et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[J]. Nature Photonics, 2013, 7:613‒619. DOI: 10.1038/nphoton.2013.177.

    [10] [10] CHEN H, LIU J. Teleportation of a two-particle four-component squeezed vacuum state by linear optical elements[J]. Chinese Optics Letters, 2009, 7:440‒442. DOI: 10.3788/COL20090705.0440.

    [11] [11] CAI C, MA L, LI J, et al. Generation of a continuous-variable quadripartite cluster state multiplexed in the spatial domain[J]. Photonics Research, 2018, 6:479‒484. DOI: 10.1364/PRJ.6.000479.

    [12] [12] HAN X, CHEN S X, WU H, et al. Coherent state phase estimation based on digital nonlinear phase-locked loop[J]. Acta Physica Sinica, 2019, 68(2):024204. DOI: 10.7498/aps.68.20181602.

    [13] [13] LI T, SONG Y, FAN H. From target tracking to targeting track: A data-driven yet analytical approach to joint target detection and tracking[J]. Signal Processing, 2023, 205:108883. DOI: 10.1016/j.sigpro.2022.108883.

    [14] [14] SHI C, WANG F, SELLATHURAI M, et al. Power minimization based robust OFDM radar waveform design for radar and communication systems in coexistence[J]. IEEE Transactions on Signal Processing, 2018, 66(5):1316‒1330. DOI: 10.1109/TSP.2017.2770086.

    [15] [15] GUO X, BREUM C R, BORREGAARD J, et al. Distributed quantum sensing in a continuous-variable entangled network[J]. Nature Physics, 2020, 16:281‒284. DOI: 10.1038/s41567-019-0743-x.

    [16] [16] XIA Y, LI W, CLARK W, et al. Demonstration of a reconfigurable entangled radio-frequency photonic sensor network[J]. Physical Review Letters, 2020, 124(15):150502. DOI: 10.1103/PhysRevLett.124.150502.

    [17] [17] XIA Y, LI W, ZHUANG Q, et al. Quantum-enhanced data classification with a variational entangled sensor network[J]. Physical Review X, 2021, 11(2):021047. DOI: 10.1103/PhysRevX.11.021047.

    [18] [18] SUN X, LI W, TIAN Y, et al. Quantum positioning and ranging via a distributed sensor network[J]. Photonics Research, 2022, 10:2886‒2892. DOI: 10.21203/rs.3.rs-1659827/v1.

    [19] [19] ZHUANG Q, ZHANG Z, JEFFREY H S. Distributed quantum sensing using continuous-variable multipartite entanglement[J]. Physical Review A, 2018, 97:032329. DOI: 10.1103/PhysRevA.97.032329.

    [20] [20] ZHANG W, YANG W, SHI S, et al. Mode matching in preparation of squeezed field with high compressibility[J]. Chinese Journal of Lasers, 2017, 11:1112001. DOI: 10.3788/CJL201744.1112001.

    [21] [21] ZHANG W, JIAO N, LI R, et al. Precise control of squeezing angle to generate 11 dB entangled state[J]. Optics Express, 2021, 29:24315. DOI: 10.1364/OE.428501.

    [22] [22] ZANG J W, ALVAREZ-MELCON A, GOMEZ-DIAZ J S. Nonreciprocal phased-array antennas[J]. Physical Review Applied, 2019, 12:054008. DOI: 10.1103/PhysRevApplied.12.054008.

    Tools

    Get Citation

    Copy Citation Text

    SUN Xiao-cong, TIAN Ya-li, GONG Ting, ZHOU Yue-ting, GUO Gu-qing, HE Xiao-hu, QIU Xuan-bing, LI Chuan-liang. Angle of Arrival Estimation via Entangled State[J]. Journal of Quantum Optics, 2024, 30(2): 20202

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 30, 2024

    Accepted: Dec. 26, 2024

    Published Online: Dec. 25, 2024

    The Author Email: SUN Xiao-cong (sunxiaocong@tyust.edu.cn)

    DOI:10.3788/jqo20243002.0202

    Topics