International Journal of Extreme Manufacturing, Volume. 7, Issue 3, 35501(2025)

Self-propelled ferroptosis nanoinducer for enhanced cancer therapy

Xu Wenxin, Tian Hao, Song Yanzhen, Qin Hanfeng, Gao Junbin, Chen Yichi, Huang Weichang, Lin Lin, Tan Haixin, Ye Yicheng, Zhang Xiaoting, Wilson Daniela A, Yang Guang, Peng Fei, and Tu Yingfeng
References(50)

[1] [1] Kocarnik J Met alGlobal Burden of Disease 2019 Cancer Collaboration 2022 Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the global burden of disease study 2019JAMA Oncol.8420–44

[2] [2] Dixon S Jet al2012 Ferroptosis: an iron-dependent form of nonapoptotic cell deathCell1491060–72

[3] [3] Yang W Set al2014 Regulation of ferroptotic cancer cell death by GPX4Cell156317–31

[4] [4] Latunde-Dada G O 2017 Ferroptosis: role of lipid peroxidation, iron and ferritinophagyBiochim. Biophys. Acta18611893–900

[5] [5] Xu T, Ding W, Ji X Y, Ao X, Liu Y, Yu W P and Wang J X 2019 Molecular mechanisms of ferroptosis and its role in cancer therapyJ. Cell Mol. Med.234900–12

[6] [6] Zaffaroni N and Beretta G L 2021 Nanoparticles for ferroptosis therapy in cancerPharmaceutics131785

[7] [7] Wang Het al2017 Characterization of ferroptosis in murine models of hemochromatosisHepatology66449–65

[8] [8] Liu T, Liu W L, Zhang M K, Yu W Y, Gao F, Li C X, Wang S B, Feng J and Zhang X Z 2018 Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapyACS Nano1212181–92

[9] [9] Lei G, Zhuang L and Gan B Y 2022 Targeting ferroptosis as a vulnerability in cancerNat. Rev. Cancer22381–96

[10] [10] Jiang X J, Stockwell B R and Conrad M 2021 Ferroptosis: mechanisms, biology and role in diseaseNat. Rev. Mol. Cell Biol.22266–82

[11] [11] Tang D L, Chen X, Kang R and Kroemer G 2021 Ferroptosis: molecular mechanisms and health implicationsCell Res.31107–25

[12] [12] Dixon S J and Stockwell B R 2019 The hallmarks of ferroptosisAnnu. Rev. Cancer Biol.335–54

[13] [13] Shan X Z, Li S M, Sun B J, Chen Q, Sun J, He Z G and Luo C 2020 Ferroptosis-driven nanotherapeutics for cancer treatmentJ. Control. Release319322–32

[14] [14] Shen Z Y, Song J B, Yung B C, Zhou Z J, Wu A G and Chen X Y 2018 Emerging strategies of cancer therapy based on ferroptosisAdv. Mater.30e1704007

[15] [15] Dan Qet al2020 Ultrasmall theranostic nanozymes to modulate tumor hypoxia for augmenting photodynamic therapy and radiotherapyBiomater. Sci.8973–87

[16] [16] Szatrowski T P and Nathan C F 1991 Production of large amounts of hydrogen peroxide by human tumor cellsCancer Res.51794–8

[17] [17] Xu P, Yu Y Q, Li T, Chen H, Wang Q, Wang M, Wan M M and Mao C 2020 Near-infrared-driven fluorescent nanomotors for detection of circulating tumor cells in whole bloodAnal. Chim. Acta112960–68

[18] [18] Zheng J, Dai B H, Wang J Z, Xiong Z, Yang Y, Liu J, Zhan X J, Wan Z H and Tang J Y 2017 Orthogonal navigation of multiple visible-light-driven artificial microswimmersNat. Commun.81438

[19] [19] Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y F and Wang J 2013 Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applicationsACS Nano79232–40

[20] [20] Xiao Z Y, Duan S F, Xu P Z, Cui J Q, Zhang H P and Wang W 2020 Synergistic speed enhancement of an electric-photochemical hybrid micromotor by tilt rectificationACS Nano148658–67

[21] [21] Venugopalan P L, Sai R, Chandorkar Y, Basu B, Shivashankar S and Ghosh A 2014 Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human bloodNano Lett.141968–75

[22] [22] Mhanna R, Qiu F M, Zhang L, Ding Y, Sugihara K, Zenobi-Wong M and Nelson B J 2014 Artificial bacterial flagella for remote-controlled targeted single-cell drug deliverySmall101953–7

[23] [23] de vila B E Fet al2017 Author correction: micromotor-enabled active drug delivery forin vivotreatment of stomach infectionNat. Commun.81299

[24] [24] Gao W, Dong R F, Thamphiwatana S, Li J X, Gao W W, Zhang L F and Wang J 2015 Artificial Micromotors in the mouse's stomach: a step towardin vivouse of synthetic motorsACS Nano9117–23

[25] [25] Chen C R, Karshalev E, Li J X, Soto F, Castillo R, Campos I, Mou F Z, Guan J G and Wang J 2016 Transient micromotors that disappear when no longer neededACS Nano1010389–96

[26] [26] Magdanz V, Sanchez S and Schmidt O G 2013 Development of a sperm-flagella driven micro-bio-robotAdv. Mater.256581–8

[27] [27] Felfoul Oet al2016 Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regionsNat. Nanotechnol.11941–7

[28] [28] Wang Q Let al2024 Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted deliverySci. Robot.9eadh1978

[29] [29] Xu W X, Qin H F, Tian H, Liu L, Gao J B, Peng F and Tu Y F 2022 Biohybrid micro/nanomotors for biomedical applicationsAppl. Mater. Today27101482

[30] [30] Hortelo A C, Patio T, Perez-Jimnez A, Blanco and Snchez S 2018 Enzyme-powered nanobots enhance anticancer drug deliveryAdv. Funct. Mater.281705086

[31] [31] Xu H F, Medina-Snchez M, Magdanz V, Schwarz L, Hebenstreit F and Schmidt O G 2018 Sperm-hybrid micromotor for targeted drug deliveryACS Nano12327–37

[32] [32] Wang Q Q, Yang S H and Zhang L 2024 Untethered micro/nanorobots for remote sensing: toward intelligent platformNano-Micro. Lett.1640

[33] [33] Ji Y X, Lin X K, Wu Z G, Wu Y J, Gao W and He Q 2019 Macroscale chemotaxis from a swarm of bacteria-mimicking nanoswimmersAngew. Chem., Int. Ed.5812200–5

[34] [34] Liu Z Y, Li T, Li N, Wang Y J, Chen L, Tang X T, Wan M M and Mao C 2022 GSH-induced chemotaxis nanomotors for cancer treatment by ferroptosis strategySci. China Chem.65989–1002

[35] [35] Wang Q Q, Chan K F, Schweizer K, Du X Z, Jin D D, Yu S C H, Nelson B J and Zhang L 2021 Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular deliverySci. Adv.7eabe5914

[36] [36] Wang S H, Xu J, Zhou Q, Geng P W, Wang B, Zhou Y F, Liu K, Peng F and Tu Y F 2021 Biodegradability of micro/nanomotors: challenges and opportunitiesAdv. Healthcare Mater.102100335

[37] [37] Ou J F, Liu K, Jiang J M, Wilson D A, Liu L, Wang F, Wang S H, Tu Y F and Peng F 2020 Micro-/nanomotors toward biomedical applications: the recent progress in biocompatibilitySmall161906184

[38] [38] Fang F, Wang S, Song Y Y, Sun M, Chen W C, Zhao D X and Zhang J F 2023 Continuous spatiotemporal therapy of a full-API nanodrug via multi-step tandem endogenous biosynthesisNat. Commun.141660

[39] [39] Hartshorn C M, Bradbury M S, Lanza G M, Nel A E, Rao J H, Wang A Z, Wiesner U B, Yang L and Grodzinski P 2018 Nanotechnology strategies to advance outcomes in clinical cancer careACS Nano1224–43

[40] [40] Cheng Z Y and Li Y Z 2007 What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an updateChem. Rev.107748–66

[41] [41] Seiler Aet al2008 Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell deathCell Metab.8237–48

[42] [42] Kuhn H, Banthiya S and van Leyen K 2015 Mammalian lipoxygenases and their biological relevanceBiochim. Biophys. Acta1851308–30

[43] [43] Wu F, Pelster L N and Minteer S D 2015 Krebs cycle metabolon formation: metabolite concentration gradient enhanced compartmentation of sequential enzymesChem. Commun.511244–7

[44] [44] Deng F, Sharma I, Dai Y B, Yang M and Kanwar Y S 2019 Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubuleJ. Clin. Invest.1295033–49

[45] [45] Doll Set al2019 FSP1 is a glutathione-independent ferroptosis suppressorNature575693–8

[46] [46] Cheng X X, Zhang J L, Xiao Y C, Wang Z H, He J, Ke M Q, Liu S J, Wang Q and Zhang L 2023 Mitochondrial regulation of ferroptosis in cancer therapyInt. J. Mol. Sci.2410037

[47] [47] Gan B Y 2021 Mitochondrial regulation of ferroptosisJ. Cell Biol.220e202105043

[48] [48] Xu W J, Qian J M, Hou G H, Wang T B, Wang J L, Wang Y P, Yang L J, Cui X K and Suo A L 2022 A hollow amorphous bimetal organic framework for synergistic cuproptosis/ferroptosis/apoptosis anticancer therapy via disrupting intracellular redox homeostasis and copper/iron metabolismsAdv. Funct. Mater.322205013

[49] [49] Luo M Fet al2018 miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanomaCell Death Differ.251457–72

[50] [50] Chen P H, Wu J L, Ding C K C, Lin C C, Pan S, Bossa N, Xu Y T, Yang W H, Mathey-Prevot B and Chi J T 2020 Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolismCell Death Differ.271008–22

Tools

Get Citation

Copy Citation Text

Xu Wenxin, Tian Hao, Song Yanzhen, Qin Hanfeng, Gao Junbin, Chen Yichi, Huang Weichang, Lin Lin, Tan Haixin, Ye Yicheng, Zhang Xiaoting, Wilson Daniela A, Yang Guang, Peng Fei, Tu Yingfeng. Self-propelled ferroptosis nanoinducer for enhanced cancer therapy[J]. International Journal of Extreme Manufacturing, 2025, 7(3): 35501

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Oct. 11, 2024

Accepted: Sep. 29, 2025

Published Online: Sep. 29, 2025

The Author Email:

DOI:10.1088/2631-7990/ada838

Topics