Chinese Journal of Lasers, Volume. 41, Issue 7, 713001(2014)
New Methods of Signal-Induced Noise Deduction for Rayleigh Scattering Lidar in Temperature Measurement
[1] [1] Hammatsu Photonics K K. Photomultiplier Tubes Basics and Applications[M]. Third Edition, Hamamatsu Photonics K K Electron Tube Division, 2006. 45-47.
[2] [2] M P Bristow, D H Bundy, A G Wright. Signal linearity, gain stability, and gating in photo-multipliers: application to differential adsorption lidar[J]. Appl Opt, 1995, 34(21): 4437-4452.
[3] [3] D P Donovan, J A Whiteway, A I Carswell. Correction for non-linear photon-counting effects in lidar systems[J]. Appl Opt, 1993, 32(33): 6742-6753.
[4] [4] Yanzeng Zhao. Signal-induced fluorescence in photomultipliers in differential absorption lidar systems[J]. Appl Opt, 1999, 38(21): 4639-4648.
[5] [5] J A Sunesson, A Apituley, D P J Swart. Differential absorption lidar system for routine monitoring of tropospheric ozone[J]. Appl Opt, 1994, 33(30): 7045-7058.
[6] [6] H S Lee, G K Schwemmer, C L Korb, et al.. Gated photomultiplier response characterization for DIAL measurements[J]. Appl Opt, 1990, 29(22): 3303-3315.
[7] [7] Sai Guan, Guotao Yang, Qihai Chang, et al.. New methods of data calibration for high power-aperture lidar[J]. Opt Express, 2013, 21(6): 7768-7785.
[8] [8] Lin Xin, Yang Yong, Cheng Xuewu, et al.. Application of mechanical chopper in atmospheric lidar[J]. Chinese J Lasers, 2013, 40(8): 0814002.
[10] [10] Cheng Xuewu, Yang Guotao, Yang Yong, et al.. Na layer and K layer simultaneous observation by lidar[J]. Chinese J Lasers, 2011, 38(2): 0214001.
[11] [11] Y Likura, N Sugimoto, Y Sassano, et al.. Improvement on lidar data processing for stratospheric aerosol measurements[J]. Appl Opt, 1987, 26(24): 5299-5306.
[12] [12] I S McDermid, S M Godin, R A Barnes, et al.. Comparison of ozone profiles from ground-based lidar, electrochemical concentration cell balloon sonde, ROCOZ-A rocket sonde, and stratospheric aerosol and gas experiment satellite measurements[J]. J Geophysical Research: Atmosphers, 1990, 95(D7): 10037-10042.
[13] [13] C Wang. New chains of space weather monitoring stations in china[J]. Space Weather, 2010, 8(8): S08001.
[14] [14] Shibata T, Kobuchi M, Maeda M. Measurements of density and temperature profiles in the middle atmosphere with a XeF lidar[J]. Appl Opt, 1986, 25(5): 685-688.
[15] [15] Leblanc I T, McDermid I S, Hauchecorne A, et al.. Evaluation of optimization of lidar temperature analysis algorithms using simulated data[J]. J Geophysical Research: Atmospheres, 1998, 103(D6): 6177-6187.
[17] [17] Guo Jingqiu, Bu Lingbing, Wang Min, et al.. Measurement of temperature profiles above nanjing using raman lidar[J]. Chinese J Lasers, 2012, 39(s1): s114009.
[18] [18] Bo Guangyu, Liu Dong, Wu Decheng, et al.. Two-wavelength lidar for observation of aerosol optical and hygroscopic properties in fog and haze days[J]. Chinese J Lasers, 2014, 41(1): 0113001.
Get Citation
Copy Citation Text
Guan Sai, Yang Guotao, Cheng Xuewu, Chang Qihai, Yang Yong, Yue Chuan, Gong Shaohua. New Methods of Signal-Induced Noise Deduction for Rayleigh Scattering Lidar in Temperature Measurement[J]. Chinese Journal of Lasers, 2014, 41(7): 713001
Category:
Received: Jan. 22, 2014
Accepted: --
Published Online: Apr. 23, 2014
The Author Email: Guan Sai (sguan@spaceweather.ac.cn)