Acta Optica Sinica, Volume. 43, Issue 19, 1906003(2023)
Single-Mode Single-Polarization Chalcogenide Negative-Curvature Hollow-Core Fibers at 4 μm
[1] Noda J, Okamoto K, Sasaki Y. Polarization-maintaining fibers and their applications[J]. Journal of Lightwave Technology, 4, 1071-1089(1986).
[2] Wei C L, Menyuk C R, Hu J. Polarization-filtering and polarization-maintaining low-loss negative curvature fibers[J]. Optics Express, 26, 9528-9540(2018).
[3] Kumar S, Singh R, Kaushik B K et al. LSPR-based cholesterol biosensor using hollow core fiber structure[J]. IEEE Sensors Journal, 19, 7399-7406(2019).
[4] Habib M S, Adamu A I, Markos C et al. Enhanced birefringence in conventional and hybrid anti-resonant hollow-core fibers[J]. Optics Express, 29, 12516-12530(2021).
[5] Chen S Q, Han L, Schülzgen A et al. Local electric field enhancement and polarization effects in a surface-enhanced Raman scattering fiber sensor with chessboard nanostructure[J]. Optics Express, 16, 13016-13023(2008).
[6] Smith A M. Birefringence induced by bends and twists in single-mode optical fiber[J]. Applied Optics, 19, 2606-2611(1980).
[7] Imoto N, Yoshizawa N, Sakai J et al. Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy[J]. IEEE Journal of Quantum Electronics, 16, 1267-1271(1980).
[8] Nishizawa N, Seno Y, Sumimura K et al. All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber[J]. Optics Express, 16, 9429-9435(2008).
[9] Piliarik M, Homola J, Manı́ková Z et al. Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber[J]. Sensors and Actuators B, 90, 236-242(2003).
[10] Burns W K, Moeller R P, Villarruel C A et al. Fiber-optic gyroscope with polarization-holding fiber[J]. Optics Letters, 8, 540-542(1983).
[11] Burns W K, Moeller R P. Measurement of polarization-mode dispersion in high-birefringence fiber[J]. Optics Letters, 8, 195-197(1983).
[12] Zou H H, Yao X T, Yu C et al. Test method for LiNbO3 integrated Y-waveguide based on polarization crosstalk analyzer[J]. Acta Optica Sinica, 40, 0613001(2020).
[13] Zhao C, Li J P, Yang H D et al. Ultra-broadband single-mode single-polarization micro-structured fiber based on "coupling-coupling-absorption" mechanism[J]. Acta Optica Sinica, 43, 0206003(2023).
[14] Poletti F. Nested antiresonant nodeless hollow core fiber[J]. Optics Express, 22, 23807-23828(2014).
[15] Habib M S, Antonio-Lopez J E, Markos C et al. Single-mode, low loss hollow-core anti-resonant fiber designs[J]. Optics Express, 27, 3824-3836(2019).
[16] Lin H, Zhang X, Zhu X S et al. Refractive index sensor based on hollow optical fiber with metal-dielectric-metal multilayered films structure[J]. Acta Optica Sinica, 38, 0606006(2018).
[17] Liu Y, Zhou G Y, Xia C M et al. The fabrication and properties analysis of octagonal hollow core micro-structured fiber[J]. Applied Laser, 34, 341-345(2014).
[18] Saitoh K, Florous N J, Murao T et al. Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms[J]. Optics Express, 14, 7342-7352(2006).
[19] Fini J M. Aircore microstructure fibers with suppressed higher-order modes[J]. Optics Express, 14, 11354-11361(2006).
[20] Benabid F, Knight J C, Antonopoulos G et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 298, 399-402(2002).
[21] Belardi W, Knight J C. Hollow antiresonant fibers with reduced attenuation[J]. Optics Letters, 39, 1853-1856(2014).
[22] Yu F, Knight J C. Negative curvature hollow-core optical fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 146-155(2015).
[23] Wang Y Y, Couny F, Roberts P J et al. Low loss broadband transmission in optimized core-shape Kagome Hollow-Core PCF[C], CPDB4(2010).
[24] Hasan M I, Akhmediev N, Chang W. Positive and negative curvatures nested in an antiresonant hollow-core fiber[J]. Optics Letters, 42, 703-706(2017).
[25] Gao S F, Wang Y Y, Ding W et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss[J]. Nature Communications, 9, 2828(2018).
[26] Zhang X, Gao S F, Wang Y Y et al. Design of large mode area all-solid anti-resonant fiber for high-power lasers[J]. High Power Laser Science and Engineering, 9, e23(2021).
[27] Si B B, Liu J X, Si G S et al. Methane gas detection based on anti-resonant hollow fiber[J]. Acta Optica Sinica, 42, 1906003(2022).
[28] Yan S B, Lian Z G, Lou S Q et al. Single-polarization single-mode hollow-core negative-curvature fiber with silicon-coated cladding[J]. Optical and Quantum Electronics, 52, 269(2020).
[29] Yan S B, Lian Z G, Lou S Q et al. A new method to achieve single-polarization guidance in hollow-core negative- curvature fibers[J]. IEEE Access, 8, 53419-53426(2020).
[30] Debord B, Amrani F, Vincetti L et al. Hollow-core fiber technology: the rising of "gas photonics"[J]. Fibers, 7, 16(2019).
[31] Debord B, Amsanpally A, Chafer M et al. Ultralow transmission loss in inhibited-coupling guiding hollow fibers[J]. Optica, 4, 209-217(2017).
[32] Adamu A I, Habib M S, Petersen C R et al. Deep-UV to mid-IR supercontinuum generation driven by mid-IR ultrashort pulses in a gas-filled hollow-core fiber[J]. Scientific Reports, 9, 4446(2019).
[33] Maes F, Fortin V, Bernier M et al. 5.6 W monolithic fiber laser at 3.55 μm[J]. Optics Letters, 42, 2054-2057(2017).
[34] Wang Y Z, Feng Y Y, Adamu A I et al. Mid-infrared photoacoustic gas monitoring driven by a gas-filled hollow-core fiber laser[J]. Scientific Reports, 11, 3512(2021).
[35] Giorgetta F R, Baumann E, Théron R et al. Short wavelength (4 μm) quantum cascade detector based on strain compensated InGaAs/InAlAs[J]. Applied Physics Letters, 92, 121101(2008).
[36] Nguyen V Q, Sanghera J S, Pureza P et al. Fabrication of arsenic selenide optical fiber with low hydrogen impurities[J]. Journal of the American Ceramic Society, 85, 2849-2851(2002).
[37] Weiblen R J, Menyuk C R, Gattass R R et al. Fabrication tolerances in As2S3 negative-curvature antiresonant fibers[J]. Optics Letters, 41, 2624-2627(2016).
[38] Gattass R R, Rhonehouse D, Gibson D et al. Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion[J]. Optics Express, 24, 25697-25703(2016).
[39] Shiryaev V S, Kosolapov A F, Pryamikov A D et al. Development of technique for preparation of As2S3 glass preforms for hollow core microstructured optical fibers[J]. Journal of Optoelectronics and Advanced Materials, 16, 1020-1025(2014).
[40] Zhang H, Chang Y J, Xu Y T et al. Design and fabrication of a chalcogenide hollow-core anti-resonant fiber for mid-infrared applications[J]. Optics Express, 31, 7659-7670(2023).
[41] Jasion G T, Shrimpton J S, Chen Y et al. MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers[J]. Optics Express, 23, 312-329(2015).
[42] Mousavi S A, Sandoghchi S R, Richardson D J et al. Broadband high birefringence and polarizing hollow core antiresonant fibers[J]. Optics Express, 24, 22943-22958(2016).
[43] Bureau B, Boussard C, Cui S et al. Chalcogenide optical fibers for mid-infrared sensing[J]. Optical Engineering, 53, 027101(2014).
[44] Feng X, Ren H, Xu F et al. Few-moded ultralarge mode area chalcogenide photonic crystal fiber for mid-infrared high power applications[J]. Optics Express, 28, 16658-16672(2020).
[45] Li G T, Peng X F, Dai S X et al. Highly coherent 1.5-8.3 μm broadband supercontinuum generation in tapered As-S chalcogenide fibers[J]. Journal of Lightwave Technology, 37, 1847-1852(2019).
[46] Liu X L, Tian C P, Wang Y Y. Fiber core design and property research of hollow-core photonic crystal fibers[J]. Journal of Beijing University of Technology, 41, 1861-1866(2015).
[47] Song J M, Sun K, Xu X B. Scattering loss analysis and structure optimization of hollow-core photonic bandgap fibers[J]. Chinese Journal of Lasers, 42, 1105003(2015).
[48] Wang Y J, Li S G, Li J S et al. Novel external gold-coated side-leakage photonic crystal fiber for tunable broadband polarization filter[J]. Journal of Lightwave Technology, 39, 1791-1799(2021).
[49] Hu J, Menyuk C R. Understanding leaky modes: slab waveguide revisited[J]. Advances in Optics and Photonics, 1, 58-106(2009).
[50] Gao S F, Wang Y Y, Wang P. Research progress on hollow-core anti-resonant fiber and gas Raman laser technology[J]. Chinese Journal of Lasers, 46, 0508014(2019).
[51] Litchinitser N M, Abeeluck A K, Headley C et al. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 27, 1592-1594(2002).
[52] Yan S B, Lou S Q, Zhang W et al. Single-polarization single-mode double-ring hollow-core anti-resonant fiber[J]. Optics Express, 26, 31160-31171(2018).
[53] Lu W J, Zhang X, Zhu K et al. Propagation of high-power picosecond pulse at 1064 nm using nodeless anti-resonant hollow-core fibre[J]. Chinese Journal of Lasers, 49, 0306001(2022).
[54] Martynkien T, Olszewski J, Szpulak M et al. Investigations of bending loss oscillations in large mode area photonic crystal fiber[J]. Optics Express, 15, 13547-13556(2007).
[55] Wang X, Lou S Q, Lu W L. Bend-resistant large-mode-area photonic crystal fiber with a triangular-core[J]. Applied Optics, 52, 4323-4328(2013).
[56] Xie Y H, Pei L, Zheng J J et al. Low-DMD and low-crosstalk few-mode multi-core fiber with air-trench/holes assisted graded-index profile[J]. Optics Communications, 474, 126155(2020).
[57] Liu S D, Zhang L, Tian M et al. Epsilon negative-based, broadband single-polarization single-mode hollow core anti-resonant photonic crystal fiber[J]. Optics Express, 29, 15664-15677(2021).
[58] Yu Y L, Kishikawa H, Liaw S K et al. Broadband silicon core photonics crystal fiber polarization filter based on surface plasmon resonance effect[J]. Optics Communications, 482, 126587(2021).
Get Citation
Copy Citation Text
Xinxin Ma, Jianshe Li, Haitao Guo, Shuguang Li, Yantao Xu, Hao Zhang, Xiaojian Meng, Ying Guo, Chun Wang, Biao Wu, Yuanyuan Zhao, Xingwang Cui. Single-Mode Single-Polarization Chalcogenide Negative-Curvature Hollow-Core Fibers at 4 μm[J]. Acta Optica Sinica, 2023, 43(19): 1906003
Category: Fiber Optics and Optical Communications
Received: Feb. 20, 2023
Accepted: Apr. 23, 2023
Published Online: Oct. 13, 2023
The Author Email: Jianshe Li (jianshelee@ysu.edu.cn), Haitao Guo (guoht_001@opt.ac.cn)