Laser & Optoelectronics Progress, Volume. 62, Issue 2, 0217001(2025)
Hierarchical Transformer with Multi-Scale Parallel Aggregation for Breast Tumor Segmentation
Fig. 8. Visualization of the segmentation results for different methods on three datasets. (a) Original images; (b) mask; (c) U-Net; (d) Attention U-Net; (e) UNet++; (f) TransUNet; (g) TransFuse; (h) proposed
Fig. 9. Visualization of segmentation results for cases with large targets and low contrast in BUSI using different methods. (a) Original images; (b)mask; (c) U-Net;(d) Attention U-Net;(e) UNet++;(f) TransUNet;(g) TransFuse; (h) proposed
Fig. 10. Visualization of the segmentation results for cases with large targets and low contrast in the UDIAT using different methods. (a) Original images; (b)mask; (c) U-Net;(d) Attention U-Net;(e) UNet++;(f) TransUNet;(g) TransFuse; (h) proposed
Fig. 11. Intuitive comparison of Dice and IoU metrics with different segmentation methods on three datasets. (a) BUSI dataset; (b) UDIAT dataset; (c) BUS dataset
Fig. 12. Visualization of segmentation results of ablation studies on UDIAT dataset. (a) Original images; (b)mask; (c) U-Net; (d) MiT; (e) MiT+ RFB; (f) MiT+SA; (g) MiT+RFB+SA; (h) RBF+SA+Aggregation Block
|
|
Get Citation
Copy Citation Text
Ping Xia, Yudie Wang, Bangjun Lei, Cheng Peng, Guangyi Zhang, Tinglong Tang. Hierarchical Transformer with Multi-Scale Parallel Aggregation for Breast Tumor Segmentation[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0217001
Category: Medical Optics and Biotechnology
Received: Mar. 6, 2024
Accepted: Apr. 25, 2024
Published Online: Jan. 9, 2025
The Author Email:
CSTR:32186.14.LOP240836