Chinese Journal of Lasers, Volume. 50, Issue 16, 1602210(2023)

Laser Processing+Silicone Oil Modification+Heat Treatment Hybrid Process for Fabrication of Superhydrophobic Zirconia Ceramic and Mechanism Investigation

Chao Liu, Junjie Zheng, Xiangfeng Liu, and Qinghua Wang*
Author Affiliations
  • School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu, China
  • show less
    References(61)

    [1] Corazza P H, Duan Y, Kimpara E T et al. Lifetime comparison of Y-TZP/porcelain crowns under different loading conditions[J]. Journal of Dentistry, 43, 450-457(2015).

    [2] Liu X Y, Zou B, Xing H Y et al. The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing[J]. Ceramics International, 46, 937-944(2020).

    [3] Zinelis S, Thomas A, Syres K et al. Surface characterization of zirconia dental implants[J]. Dental Materials, 26, 295-305(2010).

    [4] Elnayef B, Lázaro A, Suárez-López Del Amo F et al. Zirconia implants as an alternative to titanium: a systematic review and Meta-analysis[J]. The International Journal of Oral & Maxillofacial Implants, 32, e125-e134(2017).

    [5] Stadlinger B, Hennig M, Eckelt U et al. Comparison of zirconia and titanium implants after a short healing period. A pilot study in minipigs[J]. International Journal of Oral and Maxillofacial Surgery, 39, 585-592(2010).

    [6] Yoshinari M. Future prospects of zirconia for oral implants: a review[J]. Dental Materials Journal, 39, 37-45(2020).

    [7] Pittayachawan P, McDonald A, Petrie A et al. The biaxial flexural strength and fatigue property of LavaTM Y-TZP dental ceramic[J]. Dental Materials, 23, 1018-1029(2007).

    [8] Ren N F, Song J J, Li B J et al. Micro-nano structures, wettability and antibacterial property on zirconia surfaces by femtosecond laser etching[J]. Surface Technology, 51, 359-370(2022).

    [9] Wang X F, Xie H F, Zhang F M. Surface modification of dental zirconia ceramic with hydrophobic silica coating[J]. Oral Biomedicine, 2, 39-42(2011).

    [10] Yang F, Zhang J. Durable superhydrophobic EVA cellular material spin-coated by SiO2/SEBS-g-MAH toward self-cleaning roofs[J]. Progress in Organic Coatings, 168, 106896(2022).

    [11] Sun R Y, Zhao J, Mo J L et al. Study of the drag reduction performance on steel spheres with superhydrophobic ER/ZnO coating[J]. Materials Science and Engineering: B, 288, 116144(2023).

    [12] Baig N, Kammakakam I. Special wettable Azadirachta indica leaves like microarchitecture mesh filtration membrane produced by galvanic replacement reaction for layered oil/water separation[J]. Chemosphere, 313, 137544(2023).

    [13] Li R Q, Gao Q H, Dong Q J et al. Template-free electrodeposition of ultra-high adhesive superhydrophobic Zn/Zn stearate coating with ordered hierarchical structure from deep eutectic solvent[J]. Surface and Coatings Technology, 403, 126267(2020).

    [14] Ye Y Z, Kang Z X, Wang F et al. Achieving hierarchical structure with superhydrophobicity and enhanced anti-corrosion via electrochemical etching and chemical vapor deposition[J]. Applied Surface Science, 610, 155362(2023).

    [15] Coblas D G, Fatu A, Maoui A et al. Manufacturing textured surfaces: state of art and recent developments[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 229, 3-29(2015).

    [16] Guo P, Zou B, Huang C Z et al. Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition[J]. Journal of Materials Processing Technology, 240, 12-22(2017).

    [17] Ryk G, Etsion I. Testing piston rings with partial laser surface texturing for friction reduction[J]. Wear, 261, 792-796(2006).

    [18] Wassmann T, Kreis S, Behr M et al. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants[J]. International Journal of Implant Dentistry, 3, 32(2017).

    [19] Huang X C, Sun M, Shi X et al. Chemical vapor deposition of transparent superhydrophobic anti-icing coatings with tailored polymer nanoarray architecture[J]. Chemical Engineering Journal, 454, 139981(2023).

    [20] Wang Y S, Zou B, Wang J C et al. Effect of the progressive tool wear on surface topography and chip formation in micro-milling of Ti-6Al-4V using Ti(C7N3)-based cermet micro-mill[J]. Tribology International, 141, 105900(2020).

    [21] Wang J W, Zhang Y B, He Q. Durable and robust superhydrophobic fluororubber surface fabricated by template method with exceptional thermostability and mechanical stability[J]. Separation and Purification Technology, 306, 122423(2023).

    [22] Eryildiz B, Ozbey-Unal B, Menceloglu Y Z et al. Development of robust superhydrophobic PFA/TMI/PVDF membrane by electrospinning/electrospraying techniques for air gap membrane distillation[J]. Journal of Applied Polymer Science, 140, 53635(2023).

    [23] Ji S, Ramadhianti P A, Nguyen T B et al. Simple fabrication approach for superhydrophobic and superoleophobic Al surface[J]. Microelectronic Engineering, 111, 404-408(2013).

    [24] Song J L, Huang S, Hu K et al. Fabrication of superoleophobic surfaces on Al substrates[J]. Journal of Materials Chemistry A, 1, 14783-14789(2013).

    [25] Sui T Y, Cui Y X, Lin B et al. Influence of nanosecond laser processed surface textures on the tribological characteristics of diamond films sliding against zirconia bioceramic[J]. Ceramics International, 44, 23137-23144(2018).

    [26] Yu Z, Yang G Z, Zhang W J et al. Investigating the effect of picosecond laser texturing on microstructure and biofunctionalization of titanium alloy[J]. Journal of Materials Processing Technology, 255, 129-136(2018).

    [27] Pan R, Zhang H J, Zhong M L. Ultrafast laser hybrid fabrication and ice-resistance performance of a triple-scale micro/nano superhydrophobic surface[J]. Chinese Journal of Lasers, 48, 0202009(2021).

    [28] Chen F Z, Wang Y Q, Tian Y L et al. Robust and durable liquid-repellent surfaces[J]. Chemical Society Reviews, 51, 8476-8583(2022).

    [29] Fan L S, Yan Q Y, Qian Q Q et al. Laser-induced fast assembly of wettability-finely-tunable superhydrophobic surfaces for lossless droplet transfer[J]. ACS Applied Materials & Interfaces, 14, 36246-36257(2022).

    [30] Wang Q H, Wang H X. Laser surface functionalization to achieve extreme surface wetting conditions and resultant surface functionalities[J]. Journal of Central South University, 29, 3217-3247(2022).

    [31] Zheng J, Qu G C, Yang B et al. Facile preparation of robust superhydrophobic ceramic surfaces with mechanical stability, durability, and self-cleaning function[J]. Applied Surface Science, 576, 151875(2022).

    [32] Jing X B, Pu Z H, Zheng S X et al. Nanosecond laser induced microstructure features and effects thereof on the wettability in zirconia[J]. Ceramics International, 46, 24173-24182(2020).

    [33] Yan T Y, Ji L F, Li J et al. Tailoring surface wettability of TZP bioceramics by UV picosecond laser micro-fabrication[J]. Applied Physics A, 124, 97(2018).

    [34] Vanithakumari S C, Kumar C A, Thinaharan C et al. Laser patterned titanium surfaces with superior antibiofouling, superhydrophobicity, self-cleaning and durability: role of line spacing[J]. Surface and Coatings Technology, 418, 127257(2021).

    [35] Cui M M, Huang H, Wang C et al. Achieving superhydrophobicity of Zr-based metallic glass surfaces with tunable adhesion by nanosecond laser ablation and annealing[J]. ACS Applied Materials & Interfaces, 14, 39567-39576(2022).

    [36] Li X Y, Jiang Y, Tan X Y et al. Superhydrophobic brass surfaces with tunable water adhesion fabricated by laser texturing followed by heat treatment and their anti-corrosion ability[J]. Applied Surface Science, 575, 151596(2022).

    [37] Pu Z H, Jing X B, Yang C J et al. Wettability modification of zirconia by laser surface texturing and silanization[J]. International Journal of Applied Ceramic Technology, 17, 2182-2192(2020).

    [38] Shu Y X, Lu X Y, Liang Y F et al. Nanosecond laser fabrication of superhydrophobic copper and anti-frost surface on copper[J]. Surface and Coatings Technology, 441, 128514(2022).

    [39] Wang Y X, Chen J H, Yang Y F et al. Nanostructured superhydrophobic titanium-based materials: a novel preparation pathway to attain superhydrophobicity on TC4 alloy[J]. Nanomaterials, 12, 2086(2022).

    [40] Zhao S T, Du H R, Ma Z C et al. Efficient fabrication of ternary coupling biomimetic superhydrophobic surfaces with superior performance of anti-wetting and self-cleaning by a simple two-step method[J]. Materials & Design, 223, 111145(2022).

    [41] Bejugama S, Chameettachal S, Pati F et al. Tribology and in-vitro biological characterization of samaria doped ceria stabilized zirconia ceramics[J]. Ceramics International, 47, 17580-17588(2021).

    [42] Cheng Y, Zhang H W, Jaenicke J A et al. Minimalistic synthesis of α-zirconium diammonium phosphate and zirconia for applications in ion exchange and catalysis[J]. ACS Sustainable Chemistry & Engineering, 7, 895-904(2019).

    [43] D'Agostino A, Tana F, Ettorre A et al. Mesoporous zirconia surfaces with anti-biofilm properties for dental implants[J]. Biomedical Materials, 16, 045016(2021).

    [44] Parveez B, Wani M F. Tribological behaviour of nano-zirconia reinforced iron-based self-lubricating composites for bearing applications[J]. Tribology International, 159, 106969(2021).

    [45] Cunha W, Carvalho O, Henriques B et al. Surface modification of zirconia dental implants by laser texturing[J]. Lasers in Medical Science, 37, 77-93(2022).

    [46] Ji M, Xu J Y, Chen M et al. Enhanced hydrophilicity and tribological behavior of dental zirconia ceramics based on picosecond laser surface texturing[J]. Ceramics International, 46, 7161-7169(2020).

    [47] Chevalier J, Gremillard L, Virkar A V et al. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends[J]. Journal of the American Ceramic Society, 92, 1901-1920(2009).

    [48] Wang Q H, Wang H X, Wang Z D et al. Highly efficient nanosecond laser-based multifunctional surface fabrication and corrosion resistance performance[J]. Chinese Journal of Lasers, 48, 1402018(2021).

    [49] Sun X M, Wang K D, Fan Z J et al. Regulation of hydrophobicity on yttria stabilized zirconia surface by femtosecond laser[J]. Ceramics International, 47, 9264-9272(2021).

    [50] Yao Y S, Ge Z S, Chen Q B et al. Surface characteristics of medical Zr-based bulk metallic glass processed by femtosecond laser[J]. Laser & Optoelectronics Progress, 57, 111409(2020).

    [51] Gregorčič P. Comment on bioinspired reversible switch between underwater superoleophobicity/superaerophobicity and oleophilicity/aerophilicity and improved antireflective property on the nanosecond laser-ablated superhydrophobic titanium surfaces[J]. ACS Applied Materials & Interfaces, 13, 2117-2127(2021).

    [52] Bhushan B, Nosonovsky M. The rose petal effect and the modes of superhydrophobicity[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 368, 4713-4728(2010).

    [53] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 40, 546-551(1944).

    [54] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 28, 988-994(1936).

    [55] He A, Liu W W, Xue W et al. Nanosecond laser ablated copper superhydrophobic surface with tunable ultrahigh adhesion and its renewability with low temperature annealing[J]. Applied Surface Science, 434, 120-125(2018).

    [56] Long J Y, Fan P X, Gong D W et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal[J]. ACS Applied Materials & Interfaces, 7, 9858-9865(2015).

    [57] Yong J L, Chen F, Yang Q et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion[J]. The Journal of Physical Chemistry C, 117, 24907-24912(2013).

    [58] Yong J L, Yang Q, Chen F et al. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion[J]. Applied Surface Science, 288, 579-583(2014).

    [59] Wang Y S, Zou B, Huang C Z. Tool wear mechanisms and micro-channels quality in micro-machining of Ti-6Al-4V alloy using the Ti(C7N3)-based cermet micro-mills[J]. Tribology International, 134, 60-76(2019).

    [60] Wang H X, Wang Q H, Huo L F et al. High-efficient laser-based bionic surface structuring for enhanced surface functionalization and self-cleaning effect[J]. Surfaces and Interfaces, 37, 102691(2023).

    [61] Wang Q H, Yin K, Bai Z C et al. Fabrication of robust superhydrophobic copper surface via highly efficient nanosecond laser-based surface functionalization[J]. Optik, 276, 170690(2023).

    Tools

    Get Citation

    Copy Citation Text

    Chao Liu, Junjie Zheng, Xiangfeng Liu, Qinghua Wang. Laser Processing+Silicone Oil Modification+Heat Treatment Hybrid Process for Fabrication of Superhydrophobic Zirconia Ceramic and Mechanism Investigation[J]. Chinese Journal of Lasers, 2023, 50(16): 1602210

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Surface Machining

    Received: Feb. 2, 2023

    Accepted: Mar. 15, 2023

    Published Online: Jul. 31, 2023

    The Author Email: Wang Qinghua (qinghua-wang@seu.edu.cn)

    DOI:10.3788/CJL230483

    Topics