Chinese Journal of Lasers, Volume. 49, Issue 14, 1402107(2022)

Process Optimization on Laser Powder Bed Fusion of WE43 Magnesium Alloy

Bangzhao Yin1, Jinge Liu1, Bingchuan Liu2, Bo Peng1, Peng Wen1、*, Yun Tian2, Yufeng Zheng3, Caimei Wang4, Xiaolin Ma4, and Haotong Pei5
Author Affiliations
  • 1Department of Mechanical Engineering, Tsinghua University, Beijing 100083, China
  • 2Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
  • 3School of Materials Science and Engineering, Peking University, Beijing 100871, China
  • 4AK Medical Co., Ltd., Beijing 102200, China
  • 5Bright Additive Manufacturing Co., Ltd., Xi’an 710117, Shaanxi, China
  • show less
    References(27)

    [1] Sivashanmugam N, Harikrishna K L. Influence of rare earth elements in magnesium alloy-a mini review[J]. Materials Science Forum, 979, 162-166(2020).

    [2] Zheng Y F, Gu X N, Witte F. Biodegradable metals[J]. Materials Science and Engineering: R: Reports, 77, 1-34(2014).

    [3] Witte F. The history of biodegradable magnesium implants: a review[J]. Acta Biomaterialia, 6, 1680-1692(2010).

    [4] Zhao D W, Witte F, Lu F Q et al. Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective[J]. Biomaterials, 112, 287-302(2017).

    [6] Wang Y, Zhou X F. Research front and trend of specific laser additive manufacturing techniques[J]. Laser Technology, 45, 475-484(2021).

    [7] Zhang W N, Wang L Z, Feng Z X et al. Research progress on selective laser melting (SLM) of magnesium alloys: a review[J]. Optik, 207, 163842(2020).

    [8] Cao H, Cheng D L, Zhang Z K et al. Experimental research on physical properties of aluminum magnesium alloy powder[J]. Fire Science and Technology, 34, 1324-1332(2015).

    [9] Ladewig A, Schlick G, Fisser M et al. Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process[J]. Additive Manufacturing, 10, 1-9(2016).

    [10] Zhang X B, Cao Z Y, Zhao P F. Investigation on solidification cracks in pulsed laser spot welding of an AZ31 magnesium alloy[J]. Optics & Laser Technology, 126, 106132(2020).

    [11] Ding W B, Tong Y G, Deng D A et al. Microstructure and mechanical properties of laser welded AZ91D wrought magnesium alloy[J]. Chinese Journal of Lasers, 41, 0203003(2014).

    [12] Mukherjee T, Zuback J S, De A et al. Printability of alloys for additive manufacturing[J]. Scientific Reports, 6, 19717(2016).

    [13] Song J F, Song Y N, Wang W W et al. Prediction and control on the surface roughness of metal powder using selective laser melting[J]. Chinese Journal of Lasers, 49, 0202008(2022).

    [14] Takamichi I, Guthrie R I L[M]. The physical properties of liquid metals. Xian A P, Wang W L, Transl(2006).

    [16] Zumdick N A, Jauer L, Kersting L C et al. Additive manufactured WE43 magnesium: a comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43[J]. Materials Characterization, 147, 384-397(2019).

    [17] Suchy J, Horynova M, Klakurková L et al. Effect of laser parameters on processing of biodegradable magnesium alloy WE43 via selective laser melting method[J]. Materials, 13, 2623(2020).

    [18] Hyer H, Zhou L, Benson G et al. Additive manufacturing of dense WE43 Mg alloy by laser powder bed fusion[J]. Additive Manufacturing, 33, 101123(2020).

    [19] Bär F, Berger L, Jauer L et al. Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis[J]. Acta Biomaterialia, 98, 36-49(2019).

    [20] Kopp A, Derra T, Müther M et al. Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds[J]. Acta Biomaterialia, 98, 23-35(2019).

    [21] Li Y, Jahr H, Zhang X Y et al. Biodegradation-affected fatigue behavior of additively manufactured porous magnesium[J]. Additive Manufacturing, 28, 299-311(2019).

    [22] Xie K, Wang N Q, Guo Y et al. Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: an in vitro and in vivo study[J]. Bioactive Materials, 8, 140-152(2022).

    [23] Esmaily M, Zeng Z, Mortazavi A N et al. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting[J]. Additive Manufacturing, 35, 101321(2020).

    [24] Liu J G, Yin B Z, Sun Z R et al. Hot cracking in ZK60 magnesium alloy produced by laser powder bed fusion process[J]. Materials Letters, 301, 130283(2021).

    [25] Wei K W, Zeng X Y, Wang Z M et al. Selective laser melting of Mg-Zn binary alloys: effects of Zn content on densification behavior, microstructure, and mechanical property[J]. Materials Science and Engineering: A, 756, 226-236(2019).

    [26] Wang Y C, Fu P H, Wang N Q et al. Challenges and solutions for the additive manufacturing of biodegradable magnesium implants[J]. Engineering, 6, 1267-1275(2020).

    [27] Wang X J, Xu S Q, Zhou S W et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review[J]. Biomaterials, 83, 127-141(2016).

    Tools

    Get Citation

    Copy Citation Text

    Bangzhao Yin, Jinge Liu, Bingchuan Liu, Bo Peng, Peng Wen, Yun Tian, Yufeng Zheng, Caimei Wang, Xiaolin Ma, Haotong Pei. Process Optimization on Laser Powder Bed Fusion of WE43 Magnesium Alloy[J]. Chinese Journal of Lasers, 2022, 49(14): 1402107

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 20, 2021

    Accepted: Feb. 11, 2022

    Published Online: Jun. 14, 2022

    The Author Email: Wen Peng (wenpeng@tsinghua.edu.cn)

    DOI:10.3788/CJL202249.1402107

    Topics