Journal of Synthetic Crystals, Volume. 49, Issue 11, 2046(2020)
AlGaN Based Wide Bandgap Photoelectric Materials and Devices
[1] [1] Mei Y, Weng G E, Zhang B P, et al. Quantum dot verticalcavity surfaceemitting lasers covering the ‘green gap’[J]. Light Science & Applications, 2016, 6(1):e16199.
[2] [2] Dabing L, Ke J, Xiaojuan S, et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics & Photonics, 2018, 10(1):43110.
[3] [3] Yi S, Kun Z, Meixin F, et al. Roomtemperature continuouswave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si[J]. Light Science & Applications, 2018, 7(1):13
[4] [4] Bao G, Li D, Sun X, et al. Enhanced spectral response of an AlGaNbased solarblind ultraviolet photodetector with Al nanoparticles[J]. Optics Express, 2014, 22(20):24286.
[5] [5] Zhao Y, Donaldson W R. Ultrafast UV AlGaN metalsemiconductormetal photodetector with a response time below 25 ps[J]. IEEE Journal of Quantum Electronics, 2020, PP(99):11.
[6] [6] Liu X, Gu H, Li K, et al. AlGaN/GaN high electron mobility transistors with a low subthreshold swing on freestanding GaN wafer[J]. Aip Advances, 2017, 7(9):095305.
[7] [7] Chen D, Liu Z, Liang J, et al. A sandwichstructured AlGaN/GaN HEMT with broad transconductance and high breakdown voltage[J]. Journal of Materials Chemistry C, 2019, 7(3).
[8] [8] Wang J, Gu Z, Liu X, et al. An electronic enzymelinked immunosorbent assay platform for protein analysis based on magnetic beads and AlGaN/GaN high electron mobility transistors[J]. Analyst, 2020, 145.
[9] [9] Growden T A, Zhang W, Brown E R, et al. NearUV electroluminescence in unipolardoped, bipolartunneling GaN/AlN heterostructures[J]. Light Science & Applications, 2018, 7(2):17150.
[10] [10] Wang Y, Li Z Y, Hao Y, et al. Evaluation by simulation of AlGaN/GaN schottky barrier diode (SBD) with anodevia vertical field plate structure[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 25522557.
[11] [11] Kornitzer K, Limmer W, Thonke K, et al. AlN on sapphire and on SiC: CL and Raman study[J]. Journal of Crystal Growth, 1999, 201(5):441443.
[12] [12] Vispute R D, Narayan J, Budai J D. High quality optoelectronic grade epitaxial AlN films on αAl2O3, Si and 6HSiC by pulsed laser deposition[J]. Thin Solid Films, 1997, 299(1):94103.
[13] [13] Sakurai Y, Ueno K, Kobayashi A, et al. Growth of Sidoped AlN on sapphire (0001) via pulsed sputtering[J]. Apl Materials, 2018, 6(11):111103.
[14] [14] Raghavan S, Redwing J M. Intrinsic stresses in AlN layers grown by metal organic chemical vapor deposition on (0001) sapphire and (111)Si substrates[J]. Journal of Applied Physics, 2004, 96(5): 29953003.
[15] [15] Chen Y, Song H, Li D, et al. Influence of the growth temperature of AlN nucleation layer on AlN template grown by hightemperature MOCVD[J]. Materials Letters, 2014, 114: 2628.
[16] [16] Walle V D, Chris G. Effects of impurities on the lattice parameters of GaN[J]. Physical Review B, 2003, 68(16):165209.
[17] [17] Li J B, Liang J K, Rao G H, et al. Thermodynamic analysis of Mgdoped ptype GaN semiconductor[J]. Journal of Alloys and Compounds, 2006, 422(12):282.
[18] [18] Hasan M S, Mehedi I M, Reza S M F, et al. Analytical investigation of activation energy for Mgdoped pAlGaN[J]. Optical and Quantum Electronics, 2020, 52(7):348.
[19] [19] Abid I, Kabouche R, Bougerol C, et al. High lateral breakdown voltage in thin channel AlGaN/GaN high electron mobility transistors on AlN/Sapphire templates[J]. Micromachines, 2019, 10(10):690.
[20] [20] Susilo N, Hagedorn S, Jaeger D, et al. AlGaNbased deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire[J]. Applied Physics Letters, 2018, 112(4):041110.
[21] [21] Sumiya M, Kindole D, Fukuda K, et al. Growth of AlGaN/InGaN/GaN heterostructure on AlN template/sapphire[J]. Phys Status Solidi B, 2020, 257: 1900524.
[22] [22] Sun X, Li D, Chen Y, et al. In situ observation of twostep growth of AlN on sapphire using hightemperature metalorganic chemical vapour deposition[J]. CrystEngComm, 2013, 15(30): 60666073.
[23] [23] Okada N, Kato N, Sato S, et al. Growth of highquality and crack free AlN layers on sapphire substrate by multigrowth mode modification[J]. Journal of Crystal Growth, 2007, 298: 349353.
[24] [24] Peng M Z, Guo L W, Zhang J, et al. Effect of growth temperature of initial AlN buffer on the structural and optical properties of Alrich AlGaN[J]. Journal of Crystal Growth, 2007, 307(2): 289293.
[25] [25] Ozeki M, Mochizuki K, Ohtsuka N, et al. New approach to the atomic layer epitaxy of GaAs using a fast gas stream[J]. Applied Physics Letters, 1988, 53(16): 15091511.
[26] [26] Khan M A, Kuznia J N, Skogman R A, et al. Low pressure metalorganic chemical vapor deposition of AIN over sapphire substrates[J]. Applied Physics Letters, 1992, 61(21): 25392541.
[27] [27] Khan M A, Adivarahan V, Zhang J P, et al. Stripe geometry ultraviolet light emitting diodes at 305 nanometers using quaternary AlInGaN multiple quantum wells[J]. Japanese Journal of Applied Physics, 2001, 40(12A): L1308.
[28] [28] Sang L, Qin Z, Fang H, et al. AlGaNbased deepultraviolet light emitting diodes fabricated on AlN/sapphire template[J]. Chinese Physics Letters, 2009, 26(11):117801.
[29] [29] Sang L W, Qin Z X, Fang H, et al. Reduction in threading dislocation densities in AlN epilayer by introducing a pulsed atomiclayer epitaxial buffer layer[J]. Applied Physics Letters, 2008, 93(12): 122104.
[30] [30] Cicek E, McClintock R, Cho C Y, et al. AlxGa1-xNbased backilluminated solarblind photodetectors with external quantum efficiency of 89%[J]. Applied Physics Letters, 2013, 103(19): 191108.
[31] [31] Abd Rahman M N, Shuhaimi A, Yusuf Y, et al. Standard pressure deposition of crackfree AlN buffer layer grown on cplane sapphire by PALE technique via MOCVD[J]. Superlattices and microstructures, 2018, 120(AUG.):319326.
[32] [32] Demir I, Li H, Robin Y, et al. Sandwich method to grow high quality AlN by MOCVD[J]. Journal of Physics D Applied Physics, 2018, 51, 085104.
[33] [33] Hirayama H, Yatabe T, Noguchi N, et al. 231261 nm AlGaN deepultraviolet lightemitting diodes fabricated on AlN multilayer buffers grown by ammonia pulseflow method on sapphire[J]. Applied Physics Letters, 2007, 91(7):71901.
[34] [34] Hirayama H, Noguchi N, Yatabe T, et al. 227 nm AlGaN lightemitting diode with 0.15 mW output power realized using a thin quantum well and AlN buffer with reduced threading dislocation density[J]. Applied Physics Express, 2008, 1(5): 051101.
[35] [35] Hirayama H, Fujikawa S, Noguchi N, et al. 222282 nm AlGaN and InAlGaNbased deepUV LEDs fabricated on highquality AlN on sapphire[J]. Physica Status Solidi (a), 2009, 206(6): 11761182.
[36] [36] Hirayama H, Noguchi N, Kamata N. 222 nm deepultraviolet AlGaN quantum well lightemitting diode with vertical emission properties[J]. Applied Physics Express, 2010, 3(3): 032102.
[37] [37] Banal R G, Funato M, Kawakami Y, Initial nucleation of AlN grown directly on sapphire substrates by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2008, 92: 241905.
[38] [38] Banal R G, Funato M, Kawakami Y. Characteristics of high Alcontent AlGaN/AlN quantum wells fabricated by modified migration enhanced epitaxy[J]. Physica Status Solidi(c), 2010, 7: 21112114.
[39] [39] Han J, Waldrip K E, Lee S R, et al. Control and elimination of cracking of AlGaN using lowtemperature AlGaN interlayers[J]. Applied Physics Letters, 2001, 78(1):6769.
[40] [40] Fan R, ZhiBiao H, Chen Z, et al. High quality AlN with a thin interlayer grown on a sapphire substrate by plasmaassisted molecular beam epitaxy[J]. Chinese Physics Letters, 2010, 27(6): 068101.
[41] [41] Li D B, Aoki M, Miyake H, et al. Improved surface morphology of flowmodulated MOVPE grown AIN on sapphire using thin mediumtemperature AIN buffer layer[J]. Applied Surface Science, 2007, 253(24): 93959399.
[42] [42] Chen S, Li Y, Ding Y, et al. Defect reduction in AlN epilayers grown by MOCVD via intermediatetemperature interlayers[J]. Journal of Electronic Materials, 2015, 44(1):217221.
[43] [43] Yan J, Wang J, Zhang Y, et al. AlGaNbased deepultraviolet lightemitting diodes grown on Highquality AlN template using MOVPE[J]. Journal of Crystal Growth, 2015, 414: 254257.
[44] [44] Kim J, Pyeon J, Jeon M, et al. Growth and characterization of high quality AlN using combined structure of low temperature buffer and superlattices for applications in the deep ultraviolet[J]. Japanese Journal of Applied Physics, 2015, 54(8): 081001.
[45] [45] Funato M, Shibaoka M, Kawakami Y. Heteroepitaxy mechanisms of AlN on nitridated cand aplane sapphire substrates[J]. Journal of Applied Physics, 2017, 121(8): 085304.
[46] [46] Sun H, Wu F, Park Y J, et al. Influence of TMAl preflow on AlN epitaxy on sapphire[J]. Applied Physics Letters, 2017, 110(19): 192106.
[47] [47] Zhang L, Xu F, Wang J, et al. Highquality AlN epitaxy on nanopatterned sapphire substrates prepared by nanoimprint lithography[J]. Scientific Reports, 2016, 6: 35934.
[48] [48] Dong P, Yan J, Wang J, et al. 282nm AlGaNbased deep ultraviolet lightemitting diodes with improved performance on nanopatterned sapphire substrates[J]. Applied Physics Letters, 2013, 102(24): 241113.
[49] [49] Xu F, Zhang L, Xie N, et al. Realization of low dislocation density AlN on smallcoalescencearea nanopatterned sapphire substrate[J]. Crystengcomm, 2019, 21: 2490.
[50] [50] Miyake H, Nishio G, Suzuki S, et al. Annealing of an AlN buffer layer in N2CO for growth of a highquality AlN film on sapphire[J]. Appl. Phys. Express, 2016, 9: 025501.
[51] [51] Ben J, Sun X, Jia Y, et al, Defects evolution in AlN templates on PVDAlN/sapphire substrates by thermal annealing[J]. CrystEngComm, 2018, 20: 4623.
[52] [52] Ben J, Shi Z, Zang H, et al. The formation mechanism of voids in physical vapor deposited AlN epilayer during high temperature annealing[J]. Applied Physics Letters, 2020, 116(25):251601.
[53] [53] Jiang K, Sun X, Ben J, et al. The defect evolution in homoepitaxial AlN layers grown by hightemperature metalorganic chemical vapor deposition[J]. CrystEngComm, 2018, 20: 27202728.
[54] [54] Qing Paduano, Michael Snure, Gene Siegel, et al. Growth and characteristics of AlGaN/GaN heterostructures on sp2bonded BN by metalorganic chemical vapor deposition[J]. Journal of Materials Research, 2016, 31:15.
[55] [55] Qi Y, Wang Y, Pang Z, et al. Fast growth of strainfree AlN on graphenebuffered sapphire[J]. Journal of the American Chemical Society, 2018, 140(38):1193511941.
[56] [56] Jin J, Ko K B, Ryu B D, et al. Hexagonal boron nitride pattern embedded in AlN template layer for visibleblind ultraviolet photodetectors[J]. Optical Materials Express, 2017, 7(5): 14631472.
[57] [57] Chen Y, Jia Y, Shi Z, et al. Van der Waals epitaxy:a new way for growth of IIInitrides[J]. Science Chinatechnological Sciences, 2020, 63(3): 528530.
[58] [58] Borisenko D P, Gusev A, Kargin N I, et al. Plasma assistedMBE of GaN and AlN on graphene buffer layers[J]. Japanese Journal of Applied Physics, 2019, 58(SC): SC1046.
[59] [59] Chen Y, Zang H, Jiang K, et al. Improved nucleation of AlN on in situ nitrogen doped graphene for GaN quasivan der Waals epitaxy[J]. Applied Physics Letters, 2020, 117(5):051601.
[60] [60] Shi Z M, Sun X J, Jia Y P, et al. Construction of van der Waals substrates for largely mismatched heteroepitaxy systems using first principles[J]. Science China Physics, Mechanics & Astronomy volume, 2019, 62(12):127311.
[61] [61] Kamiyama S, Iwaya M, Hayashi N, et al. Lowtemperaturedeposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure[J]. Journal of Crystal Growth, 2001, 223(1): 8391.
[62] [62] Jiang K, Sun X, Ben J, et al. Suppressing the compositional nonuniformity of AlGaN grown on a HVPEAlN template with large macrosteps[J]. CrystEngComm, 2019, 21(33): 48644873.
[63] [63] Luong T T, Tran B T, Ho Y T, et al. Performance improvements of AlGaN/GaN HEMTs by strain modification and unintentional carbon incorporation[J]. Electronic Materials Letters, 2015, 11(2):217224.
[64] [64] Knauer A, Zeimer U, Kueller V, et al. MOVPE growth of AlxGa1-xN with x~0.5 on epitaxial laterally overgrown AlN/sapphire templates for UVLEDs[J]. Physica Status Solidi (c), 2014, 11(34): 377380
[65] [65] Hakamata J, Kawase Y, Dong L, et al. Growth of highquality AlN and AlGaN films on sputtered AlN/sapphire templates via hightemperature annealing[J]. Physica Status Solidi (b), 2018:1700506.
[66] [66] Kim M, Fujita T, Fukahori S, et al. AlGaNbased deep ultraviolet lightemitting diodes fabricated on patterned sapphire substrates[J]. Applied Physics Express, 2011, 4(9): 092102
[67] [67] Kueller V, Knauer A, Brunner F, et al. Growth of AlGaN and AlN on patterned AlN/sapphire templates[J]. Journal of Crystal Growth, 2011, 315(1): 200203.
[68] [68] Wang H M, Zhang J P, Chen C Q, et al. AlN/AlGaN superlattices as dislocation filter for lowthreadingdislocation thick AlGaN layers on sapphire[J]. Applied Physics Letters, 2002, 81(4): 604606.
[69] [69] Fujioka A, Misaki T, Murayama T, et al. Improvement in output power of 280nm deep ultraviolet lightemitting diode by using AlGaN multi quantum wells[J]. Applied Physics Express, 2010, 3(4): 041001.
[70] [70] Wang S, Zhang X, Zhu M, et al. Crackfree Sidoped nAlGaN film grown on sapphire substrate with hightemperature AlN interlayer[J]. OptikInternational Journal for Light and Electron Optics, 2015, 126(23): 36983702.
[71] [71] Zhang J P, Wang H M, Gaevski M E, et al. Crackfree thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management[J]. Applied Physics Letters, 2002, 80(19): 3542.
[72] [72] Katsuno T, Liu Y, Li D, et al. ntype conductivity control of AlGaN with high Al mole fraction[J]. Physica Status Solidi (c), 2006, 3(6): 14351438
[73] [73] Cantu P, Keller S, Mishra U K, et al. Metalorganic chemical vapor deposition of highly conductive Al0. 65Ga0. 35N films[J]. Applied Physics Letters, 2003, 82(21): 36833685.
[74] [74] Kim K H, Li J, Jin S X, et al. IIInitride ultraviolet lightemitting diodes with delta doping[J]. Applied Physics Letters, 2003, 83(3): 566568.
[75] [75] Zhu S, Yan J, Zhang Y, et al. The effect of deltadoping on Sidoped Al rich nAlGaN on AlN template grown by MOCVD[J]. Physica Status Solidi (c), 2014, 11(34): 466468.
[76] [76] Cho H K, Lee J Y, Jeon S R, et al. Influence of Mg doping on structural defects in AlGaN layers grown by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2001, 79.
[77] [77] Fan A, Zhang X, Chen S, et al. Effects of Ⅴ/Ⅲ ratio and Cp2Mg flow rate on characteristics of nonpolar aplane Mgdeltadoped pAlGaN epilayer[J]. Superlattices and Microstructures, 2020, 145: 106632.
[78] [78] Chen Y, Wu H, Han E, et al. High hole concentration in ptype AlGaN by indiumsurfactantassisted Mgdelta doping[J]. Applied Physics Letters, 2015, 106(16): 162102.
[79] [79] Aoyagi Y, Takeuchi M, Iwai S, et al. High hole carrier concentration realized by alternative codoping technique in metal organic chemical vapor deposition[J]. Applied Physics Letters, 2011, 99(11):21525.
[80] [80] Waldron E L, Graff J W, Schubert E F. Improved mobilities and resistivities in modulationdoped ptype AlGaN/GaN superlattices[J]. Applied Physics Letters, 2001, 79(17):27372739.
[81] [81] Zheng T C, Lin W, Liu R, et al. Improved ptype conductivity in Alrich AlGaN using multidimensional Mgdoped superlattices[J]. Sentific Reports, 2016, 6:21897.
[82] [82] Simon J, Protasenko V, Lian C, et al. Polarizationinduced hole doping in widebandgap uniaxial semiconductor heterostructures[J]. Science, 2010, 327(5961): 6064.
[83] [83] Akasaki I and Amanor H, Conductivity control of AlGaN fabrication of AlGaN/GaN multiheterostructure and their application to UV/blue light emitting devices [J]. Mater. Res. Soc. Symp. Proc., 1992, 242:383394.
[84] [84] Han J, Crawford M H, Shul R J, et al. AlGaN/GaN quantum well ultraviolet light emitting diodes[J]. Applied Physics Letters, 1998, 73(12):16881690.
[85] [85] Kueller V, Knauer A, Brunner F, et al. Growth of AlGaN and A1 N on patterned AlN/sapphire templates[J].Journal of Crystal Growth, 2011, 315(1):200203.
[86] [86] Manley P, Walde S, Hagedorn S, et al. Nanopatterned sapphire substrates in deepUV LEDs: is there an optical benefit? [J]. Opt Express, 2020, 28(3):36193635.
[87] [87] Hagedorn S, Walde S, Susilo N, et al. Improving AlN crystal quality and strain management on nanopatterned sapphire substrates by hightemperature annealing for UVC lightemitting diodes [J]. Phys Status Solidi A, 2020, 217(7): 1900796.
[88] [88] Takano T, Mino T, Sakai J, et al. Deepultraviolet lightemitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving lightextraction efficiency[J]. Appl Phys Express, 2017, 10(3):031002.
[89] [89] Munshi A M, Kim D C, Heimdal C P, et al. Selective area growth of AlGaN nanopyramid arrays on graphene by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2018, 113(26):263102.
[90] [90] Tchoe Y, Chung K, Lee K, et al. Freestanding and ultrathin inorganic lightemitting diode array[J]. NPG Asia Mater, 2019, 11:37.
[91] [91] Ke W C, Liang Z Y, Tesfay S T, et al. Epitaxial growth and characterization of GaN thin films on graphene/sapphire substrate by embedding a hybridAlN buffer layer[J]. Appl Surf Sci, 2019, 494:644650.
[92] [92] Chung K, Yoo H, Hyun J K, et al. Flexible GaN lightemitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots[J]. Adv Mater, 2016, 28(35):76887694.
[93] [93] Chung K, Lee C H, Yi G C, Transferable GaN layers grown on ZnOcoated graphene layers for optoelectronic devices[J]. Science, 2010, 330(6004):655657.
[94] [94] Chen Z L, Liu Z Q, Wei T B, et al. Improved epitaxy of AlN film for deepultraviolet lightemitting diodes enabled by graphene[J]. Adv Mater, 2019, 31(23):1807345.
[95] [95] Hoiaas I M, Liudi M A, Vullum P E, et al. GaN/AIGaN nanocolumn ultraviolet lightemitting diode using doublelayer graphene as substrate and transparent electrode[J]. Nano Lett, 2019, 19(3):16491658.
[96] [96] Zhao S R, Lu J Y, Hai X, et al. AlGaN nanowires for ultraviolet lightemitting:recent progress, challenges, and prospects[J]. Micromachines, 2020, 11(2):125.
[97] [97] Sadaf S M, Zhao S, Wu Y, et al. An AlGaN coreshell tunnel junction nanowire lightemitting diode operating in the ultravioletC band [J]. Nano Lett, 2017, 17(2):12121218.
[98] [98] Liu X, Le B H, Woo S Y, et al. Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics [J]. Opt Express, 2017, 25(24):30494.
[99] [99] Ra Y H, Kang S, Lee C R, et al. Ultraviolet lightemitting diode using nonpolar AlGaN coreshell nanowire heterostructures[J]. Adv. Optical Mater., 2018, 6(14):1701391.
[100] [100] Xu Z, Ding H, Sadler B M, et al. Analytical performance study of solar blind nonlineofsight ultraviolet shortrange communication links[J]. Optics Letters, 2008, 33(16):18601862.
[101] [101] Zhou W, Li H, Yi X, et al. A criterion for UV detection of AC corona inception in a rodplane air gap[J]. Dielectrics and Electrical Insulation, IEEE Transactions on, 2011, 18(1):232237.
[102] [102] Yuan R Z, Ma J S. Review of ultraviolet nonlineofsight communication[J]. China Communications, 2016, 13(6): 6375.
[103] [103] Chen X H, Ren F F, Gu S L, et al. Review of galliumoxidebased solarblind ultraviolet photodetector[J]. Photonics Research, 2019, 7(4): 381415.
[104] [104] Walker D, Zhang X, Kung P, et al. AlGaN ultraviolet photoconductors grown on sapphire[J]. Applied Physics Letters, 1996, 68(15): 21002101.
[105] [105] Monroy E, Calle F, Munoz E, et al. AlGaN metalsemiconductormetal photodiodes[J]. Applied Physics Letters, 1999, 74(22):3401.
[106] [106] Lee K H, Chang P, Chang S, et al. AlGaN/GaN schottky barrier UV photodetectors with a GaN sandwich layer[J]. IEEE Sensors Journal, 2009, 9(7): 814819.
[107] [107] Walker D, Kumar V, Mi K, et al. Solarblind AlGaN photodiodes with very low cutoff wavelength[J]. Applied Physics Letters, 2000, 76(4): 403405.
[108] [108] Huang Y, Chen D, Lu H, et al. Backilluminated separate absorption and multiplication AlGaN solarblind avalanche photodiodes[J]. Applied Physics Letters, 2012, 101(25): 253516.
[109] [109] Qiu X, Song Z, Sun L, et al. Highgain AlGaN/GaN visibleblind avalanche heterojunction phototransistors[J]. Journal of Materials Science: Materials in Electronics, 2020, 31: 652657.
[110] [110] Yoshikawa A, Ushida S, Nagase K, et al. Highperformance solarblind Al0.6Ga0.4N/Al0.5Ga0.5N MSM type photodetector[J]. Applied Physics Letters, 2017, 111(19): 191103.
[111] [111] Yoshikawa A, Yamamoto Y, Murase T, et al. Highphotosensitivity AlGaNbased UV heterostructurefieldeffecttransistortype photosensors[J]. Japanese Journal of Applied Physics, 2016, 55(5s): 05FJ04.
[112] [112] Munoz E, Monroy E, Garrido J A, et al. Photoconductor gain mechanisms in GaN ultraviolet detectors[J]. Applied Physics Letters, 1997, 71(7): 870872.
[113] [113] Garrido J A, Monroy E, Izpura I, et al. Photoconductive gain modelling of GaN photodetectors[J]. Semiconductor Science and Technology, 1998, 13(6): 563568.
[114] [114] Lim B W, Chen Q C. High responsitivity intrinsic photoconductors based on AlxGa1-xN[J]. Applied Physics Letters, 1996, 68(26):37613762.
[115] [115] Seo I, Lee I, Park Y, et al. Characteristics of UV photodetector fabricated by Al0.3Ga0.7N/GaN heterostructure[J]. Journal of Crystal Growth, 2003, 252(1): 5157.
[116] [116] Butun S, Tut T, Butun B, et al. Deepultraviolet Al0.75Ga0.25N photodiodes with low cutoff wavelength[J]. Applied Physics Letters, 2006, 88(12):1235031235032.
[117] [117] Kuan T M, Chang S J, Su Y K, et al. High opticalgain AlGaN/GaN 2 dimensional electron gas photodetectors[J]. Japanese Journal of Applied Physics, 2003, 42(9A):55635564.
[118] [118] Jiang K, Xiaojuan S, Zhang Z H, et al. Polarization enhanced AlGaN solarblind ultraviolet detectors[J]. Photonics Research, 2020, 8(7):1243.
[119] [119] Ishiguro M, Ikeda K, Mizuno M, et al. Control of the detection wavelength in AlGaN/GaNbased heterofieldeffecttransistor photosensors[J]. Japanese Journal of Applied Physics, 2013, 52: 08 JF02.
[120] [120] Narita T, Wakejima A, Egawa J. Ultraviolet photodetectors using transparent gate AIGaN/GaN high electron mobility transistor on silicon substrate[J]. Japanese Journal of Applied Physics, 2013, 52: 01AG06.
[121] [121] Lee M L, Sheu J, Shu Y, et al. Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransitors with high optical gain and high rejection ratio[J]. Applied Physics Letters, 2008, 92(5): 053506.
[122] [122] Tang S, Zhang L, Wu H, et al. Improved performance of ultraviolet AlGaN/GaN npn HPTs by a thin lightlydoped nAlGaN insertion layer[J]. AIP Advances, 2019, 9(12): 125239.
[123] [123] Liu H Y, Wang Y H, Hsu W C. Suppression of dark current on AlGaN/GaN metalsemiconductormetal photodetectors[J]. IEEE Sensors Journal, 2015, 15(9):52025207.
[124] [124] Monroy E, Walker D, Kung P, et al. Highquality visibleblind AlGaN pin photodiodes[J]. Applied Physics Letters, 1999, 74(8): 11711173.
[125] [125] Mcclintock R, Yasan A, Mayes K, et al. High quantum efficiency AlGaN solarblind pin photodiodes[J]. Applied Physics Letters, 2004, 84(8):1248.
[126] [126] Hou M, Qin Z, He C, et al. Study on AlGaN PININ solarblind avalanche photodiodes with Al0.45Ga0.55N multiplication layer[J]. Electronic Materials Letters, 2015, 11(6): 10531058.
[127] [127] Wang X D, Chen X Y, Hou L W, et al. Role of ntype AlGaN layer in photo response mechanism for separate absorption and multiplication (SAM) GaN/AlGaN avalanche photodiode[J]. Opt Quantum Electron, 2015, 47, 13571365.
[128] [128] Gao L L, Investigation of backilluminated AlGaN avalanche photodiodes with ptype graded AlxGa1-xN layer[J]. Opt. Quantum Electron. 2015, 47: 19331940.
[129] [129] Shao Z G, Chen D J, Lu H, et al. Highgain AlGaN solarblind avalanche photodiodes[J]. IEEE Electron Device Letters, 2014, 35(3):372374.
[130] [130] Kim J, Ji M H, Detchprohm T, et al. AlxGa1-xN ultraviolet avalanche photodiodes with avalanche gain greater than 105[J]. IEEE Photonics Technology Letters, 2015, 27(6):642645.
[131] [131] Wu H, Wu W, Zhang H, et al. All AlGaN epitaxial structure solarblind avalanche photodiodes with high efficiency and high gain[J]. Applied Physics Express, 2016, 9(5):052103.1052103.3.
[132] [132] Zheng J, Wang L, Wu X, et al. A PMTlike high gain avalanche photodiode based on GaN/AlN periodically stacked structure[J]. Applied Physics Letters, 2016, 24, 109(24): 241105.
[133] [133] Reddy P, Breckenridge M H, Guo Q, et al. High gain, large area, and solar blind avalanche photodiodes based on Alrich AlGaN grown on AlN substrates[J]. Applied Physics Letters, 2020, 116(8):081101.
[134] [134] Wu Y, Sun X, Jia Y, et al. Review of improved spectral response of ultraviolet photodetectors by surface plasmon[J]. Chinese Physics B, 2018, 27(12): 126101.
[135] [135] Liu X, Li D, Sun X, et al. Tunable dipole surface plasmon resonances of silver nanoparticles by cladding dielectric layers[J]. Scientific Reports, 2015, 5(1): 1255512555.
[136] [136] Zhang W, Xu J, Ye W, et al. Highperformance AlGaN metalsemiconductormetal solarblind ultraviolet photodetectors by localized surface plasmon enhancement[J]. Applied Physics Letters, 2015, 2, 106(2): 021112.
[137] [137] Li D, Sun X, Jia Y, et al. Direct observation of localized surface plasmon field enhancement by Kelvin probe force microscopy[J]. LightScience & Applications, 2017, 6(8): e17038.
[138] [138] Wu Y, Sun X, Shi Z, et al. In situ fabrication of Al surface plasmon nanoparticles by metalorganic chemical vapor deposition for enhanced performance of AlGaN deep ultraviolet detectors[J]. Nanoscale Advances. 2020, 2(5): 18541858.
[139] [139] Brendel M, Helbling M, Knigge A, et al. Solarblind AlGaN MSM photodetectors with 24% external quantum efficiency at 0 V[J]. Electronics Letters, 2015, 51(20): 15981600.
[140] [140] Aiello A, Wu Y, Mi Z, et al. Deep ultraviolet monolayer GaN/AlN diskinnanowire array photodiode on silicon[J]. Applied Physics Letters, 2020, 116(6): 061104.
Get Citation
Copy Citation Text
BEN Jianwei, SUN Xiaojuan, JIANG Ke, CHEN Yang, SHI Zhiming, ZANG Hang, ZHANG Shanli, LI Dabing, LYU Wei. AlGaN Based Wide Bandgap Photoelectric Materials and Devices[J]. Journal of Synthetic Crystals, 2020, 49(11): 2046
Category:
Received: --
Accepted: --
Published Online: Jan. 26, 2021
The Author Email: BEN Jianwei (benjianwei@ciomp.ac.cn)
CSTR:32186.14.