Journal of Synthetic Crystals, Volume. 49, Issue 11, 2046(2020)

AlGaN Based Wide Bandgap Photoelectric Materials and Devices

BEN Jianwei1、*, SUN Xiaojuan1,2, JIANG Ke1,2, CHEN Yang1,2, SHI Zhiming1,2, ZANG Hang1,2, ZHANG Shanli1,2, LI Dabing1,2, and LYU Wei1,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(140)

    [1] [1] Mei Y, Weng G E, Zhang B P, et al. Quantum dot verticalcavity surfaceemitting lasers covering the ‘green gap’[J]. Light Science & Applications, 2016, 6(1):e16199.

    [2] [2] Dabing L, Ke J, Xiaojuan S, et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics & Photonics, 2018, 10(1):43110.

    [3] [3] Yi S, Kun Z, Meixin F, et al. Roomtemperature continuouswave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si[J]. Light Science & Applications, 2018, 7(1):13

    [4] [4] Bao G, Li D, Sun X, et al. Enhanced spectral response of an AlGaNbased solarblind ultraviolet photodetector with Al nanoparticles[J]. Optics Express, 2014, 22(20):24286.

    [5] [5] Zhao Y, Donaldson W R. Ultrafast UV AlGaN metalsemiconductormetal photodetector with a response time below 25 ps[J]. IEEE Journal of Quantum Electronics, 2020, PP(99):11.

    [6] [6] Liu X, Gu H, Li K, et al. AlGaN/GaN high electron mobility transistors with a low subthreshold swing on freestanding GaN wafer[J]. Aip Advances, 2017, 7(9):095305.

    [7] [7] Chen D, Liu Z, Liang J, et al. A sandwichstructured AlGaN/GaN HEMT with broad transconductance and high breakdown voltage[J]. Journal of Materials Chemistry C, 2019, 7(3).

    [8] [8] Wang J, Gu Z, Liu X, et al. An electronic enzymelinked immunosorbent assay platform for protein analysis based on magnetic beads and AlGaN/GaN high electron mobility transistors[J]. Analyst, 2020, 145.

    [9] [9] Growden T A, Zhang W, Brown E R, et al. NearUV electroluminescence in unipolardoped, bipolartunneling GaN/AlN heterostructures[J]. Light Science & Applications, 2018, 7(2):17150.

    [10] [10] Wang Y, Li Z Y, Hao Y, et al. Evaluation by simulation of AlGaN/GaN schottky barrier diode (SBD) with anodevia vertical field plate structure[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 25522557.

    [11] [11] Kornitzer K, Limmer W, Thonke K, et al. AlN on sapphire and on SiC: CL and Raman study[J]. Journal of Crystal Growth, 1999, 201(5):441443.

    [12] [12] Vispute R D, Narayan J, Budai J D. High quality optoelectronic grade epitaxial AlN films on αAl2O3, Si and 6HSiC by pulsed laser deposition[J]. Thin Solid Films, 1997, 299(1):94103.

    [13] [13] Sakurai Y, Ueno K, Kobayashi A, et al. Growth of Sidoped AlN on sapphire (0001) via pulsed sputtering[J]. Apl Materials, 2018, 6(11):111103.

    [14] [14] Raghavan S, Redwing J M. Intrinsic stresses in AlN layers grown by metal organic chemical vapor deposition on (0001) sapphire and (111)Si substrates[J]. Journal of Applied Physics, 2004, 96(5): 29953003.

    [15] [15] Chen Y, Song H, Li D, et al. Influence of the growth temperature of AlN nucleation layer on AlN template grown by hightemperature MOCVD[J]. Materials Letters, 2014, 114: 2628.

    [16] [16] Walle V D, Chris G. Effects of impurities on the lattice parameters of GaN[J]. Physical Review B, 2003, 68(16):165209.

    [17] [17] Li J B, Liang J K, Rao G H, et al. Thermodynamic analysis of Mgdoped ptype GaN semiconductor[J]. Journal of Alloys and Compounds, 2006, 422(12):282.

    [18] [18] Hasan M S, Mehedi I M, Reza S M F, et al. Analytical investigation of activation energy for Mgdoped pAlGaN[J]. Optical and Quantum Electronics, 2020, 52(7):348.

    [19] [19] Abid I, Kabouche R, Bougerol C, et al. High lateral breakdown voltage in thin channel AlGaN/GaN high electron mobility transistors on AlN/Sapphire templates[J]. Micromachines, 2019, 10(10):690.

    [20] [20] Susilo N, Hagedorn S, Jaeger D, et al. AlGaNbased deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire[J]. Applied Physics Letters, 2018, 112(4):041110.

    [21] [21] Sumiya M, Kindole D, Fukuda K, et al. Growth of AlGaN/InGaN/GaN heterostructure on AlN template/sapphire[J]. Phys Status Solidi B, 2020, 257: 1900524.

    [22] [22] Sun X, Li D, Chen Y, et al. In situ observation of twostep growth of AlN on sapphire using hightemperature metalorganic chemical vapour deposition[J]. CrystEngComm, 2013, 15(30): 60666073.

    [23] [23] Okada N, Kato N, Sato S, et al. Growth of highquality and crack free AlN layers on sapphire substrate by multigrowth mode modification[J]. Journal of Crystal Growth, 2007, 298: 349353.

    [24] [24] Peng M Z, Guo L W, Zhang J, et al. Effect of growth temperature of initial AlN buffer on the structural and optical properties of Alrich AlGaN[J]. Journal of Crystal Growth, 2007, 307(2): 289293.

    [25] [25] Ozeki M, Mochizuki K, Ohtsuka N, et al. New approach to the atomic layer epitaxy of GaAs using a fast gas stream[J]. Applied Physics Letters, 1988, 53(16): 15091511.

    [26] [26] Khan M A, Kuznia J N, Skogman R A, et al. Low pressure metalorganic chemical vapor deposition of AIN over sapphire substrates[J]. Applied Physics Letters, 1992, 61(21): 25392541.

    [27] [27] Khan M A, Adivarahan V, Zhang J P, et al. Stripe geometry ultraviolet light emitting diodes at 305 nanometers using quaternary AlInGaN multiple quantum wells[J]. Japanese Journal of Applied Physics, 2001, 40(12A): L1308.

    [28] [28] Sang L, Qin Z, Fang H, et al. AlGaNbased deepultraviolet light emitting diodes fabricated on AlN/sapphire template[J]. Chinese Physics Letters, 2009, 26(11):117801.

    [29] [29] Sang L W, Qin Z X, Fang H, et al. Reduction in threading dislocation densities in AlN epilayer by introducing a pulsed atomiclayer epitaxial buffer layer[J]. Applied Physics Letters, 2008, 93(12): 122104.

    [30] [30] Cicek E, McClintock R, Cho C Y, et al. AlxGa1-xNbased backilluminated solarblind photodetectors with external quantum efficiency of 89%[J]. Applied Physics Letters, 2013, 103(19): 191108.

    [31] [31] Abd Rahman M N, Shuhaimi A, Yusuf Y, et al. Standard pressure deposition of crackfree AlN buffer layer grown on cplane sapphire by PALE technique via MOCVD[J]. Superlattices and microstructures, 2018, 120(AUG.):319326.

    [32] [32] Demir I, Li H, Robin Y, et al. Sandwich method to grow high quality AlN by MOCVD[J]. Journal of Physics D Applied Physics, 2018, 51, 085104.

    [33] [33] Hirayama H, Yatabe T, Noguchi N, et al. 231261 nm AlGaN deepultraviolet lightemitting diodes fabricated on AlN multilayer buffers grown by ammonia pulseflow method on sapphire[J]. Applied Physics Letters, 2007, 91(7):71901.

    [34] [34] Hirayama H, Noguchi N, Yatabe T, et al. 227 nm AlGaN lightemitting diode with 0.15 mW output power realized using a thin quantum well and AlN buffer with reduced threading dislocation density[J]. Applied Physics Express, 2008, 1(5): 051101.

    [35] [35] Hirayama H, Fujikawa S, Noguchi N, et al. 222282 nm AlGaN and InAlGaNbased deepUV LEDs fabricated on highquality AlN on sapphire[J]. Physica Status Solidi (a), 2009, 206(6): 11761182.

    [36] [36] Hirayama H, Noguchi N, Kamata N. 222 nm deepultraviolet AlGaN quantum well lightemitting diode with vertical emission properties[J]. Applied Physics Express, 2010, 3(3): 032102.

    [37] [37] Banal R G, Funato M, Kawakami Y, Initial nucleation of AlN grown directly on sapphire substrates by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2008, 92: 241905.

    [38] [38] Banal R G, Funato M, Kawakami Y. Characteristics of high Alcontent AlGaN/AlN quantum wells fabricated by modified migration enhanced epitaxy[J]. Physica Status Solidi(c), 2010, 7: 21112114.

    [39] [39] Han J, Waldrip K E, Lee S R, et al. Control and elimination of cracking of AlGaN using lowtemperature AlGaN interlayers[J]. Applied Physics Letters, 2001, 78(1):6769.

    [40] [40] Fan R, ZhiBiao H, Chen Z, et al. High quality AlN with a thin interlayer grown on a sapphire substrate by plasmaassisted molecular beam epitaxy[J]. Chinese Physics Letters, 2010, 27(6): 068101.

    [41] [41] Li D B, Aoki M, Miyake H, et al. Improved surface morphology of flowmodulated MOVPE grown AIN on sapphire using thin mediumtemperature AIN buffer layer[J]. Applied Surface Science, 2007, 253(24): 93959399.

    [42] [42] Chen S, Li Y, Ding Y, et al. Defect reduction in AlN epilayers grown by MOCVD via intermediatetemperature interlayers[J]. Journal of Electronic Materials, 2015, 44(1):217221.

    [43] [43] Yan J, Wang J, Zhang Y, et al. AlGaNbased deepultraviolet lightemitting diodes grown on Highquality AlN template using MOVPE[J]. Journal of Crystal Growth, 2015, 414: 254257.

    [44] [44] Kim J, Pyeon J, Jeon M, et al. Growth and characterization of high quality AlN using combined structure of low temperature buffer and superlattices for applications in the deep ultraviolet[J]. Japanese Journal of Applied Physics, 2015, 54(8): 081001.

    [45] [45] Funato M, Shibaoka M, Kawakami Y. Heteroepitaxy mechanisms of AlN on nitridated cand aplane sapphire substrates[J]. Journal of Applied Physics, 2017, 121(8): 085304.

    [46] [46] Sun H, Wu F, Park Y J, et al. Influence of TMAl preflow on AlN epitaxy on sapphire[J]. Applied Physics Letters, 2017, 110(19): 192106.

    [47] [47] Zhang L, Xu F, Wang J, et al. Highquality AlN epitaxy on nanopatterned sapphire substrates prepared by nanoimprint lithography[J]. Scientific Reports, 2016, 6: 35934.

    [48] [48] Dong P, Yan J, Wang J, et al. 282nm AlGaNbased deep ultraviolet lightemitting diodes with improved performance on nanopatterned sapphire substrates[J]. Applied Physics Letters, 2013, 102(24): 241113.

    [49] [49] Xu F, Zhang L, Xie N, et al. Realization of low dislocation density AlN on smallcoalescencearea nanopatterned sapphire substrate[J]. Crystengcomm, 2019, 21: 2490.

    [50] [50] Miyake H, Nishio G, Suzuki S, et al. Annealing of an AlN buffer layer in N2CO for growth of a highquality AlN film on sapphire[J]. Appl. Phys. Express, 2016, 9: 025501.

    [51] [51] Ben J, Sun X, Jia Y, et al, Defects evolution in AlN templates on PVDAlN/sapphire substrates by thermal annealing[J]. CrystEngComm, 2018, 20: 4623.

    [52] [52] Ben J, Shi Z, Zang H, et al. The formation mechanism of voids in physical vapor deposited AlN epilayer during high temperature annealing[J]. Applied Physics Letters, 2020, 116(25):251601.

    [53] [53] Jiang K, Sun X, Ben J, et al. The defect evolution in homoepitaxial AlN layers grown by hightemperature metalorganic chemical vapor deposition[J]. CrystEngComm, 2018, 20: 27202728.

    [54] [54] Qing Paduano, Michael Snure, Gene Siegel, et al. Growth and characteristics of AlGaN/GaN heterostructures on sp2bonded BN by metalorganic chemical vapor deposition[J]. Journal of Materials Research, 2016, 31:15.

    [55] [55] Qi Y, Wang Y, Pang Z, et al. Fast growth of strainfree AlN on graphenebuffered sapphire[J]. Journal of the American Chemical Society, 2018, 140(38):1193511941.

    [56] [56] Jin J, Ko K B, Ryu B D, et al. Hexagonal boron nitride pattern embedded in AlN template layer for visibleblind ultraviolet photodetectors[J]. Optical Materials Express, 2017, 7(5): 14631472.

    [57] [57] Chen Y, Jia Y, Shi Z, et al. Van der Waals epitaxy:a new way for growth of IIInitrides[J]. Science Chinatechnological Sciences, 2020, 63(3): 528530.

    [58] [58] Borisenko D P, Gusev A, Kargin N I, et al. Plasma assistedMBE of GaN and AlN on graphene buffer layers[J]. Japanese Journal of Applied Physics, 2019, 58(SC): SC1046.

    [59] [59] Chen Y, Zang H, Jiang K, et al. Improved nucleation of AlN on in situ nitrogen doped graphene for GaN quasivan der Waals epitaxy[J]. Applied Physics Letters, 2020, 117(5):051601.

    [60] [60] Shi Z M, Sun X J, Jia Y P, et al. Construction of van der Waals substrates for largely mismatched heteroepitaxy systems using first principles[J]. Science China Physics, Mechanics & Astronomy volume, 2019, 62(12):127311.

    [61] [61] Kamiyama S, Iwaya M, Hayashi N, et al. Lowtemperaturedeposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure[J]. Journal of Crystal Growth, 2001, 223(1): 8391.

    [62] [62] Jiang K, Sun X, Ben J, et al. Suppressing the compositional nonuniformity of AlGaN grown on a HVPEAlN template with large macrosteps[J]. CrystEngComm, 2019, 21(33): 48644873.

    [63] [63] Luong T T, Tran B T, Ho Y T, et al. Performance improvements of AlGaN/GaN HEMTs by strain modification and unintentional carbon incorporation[J]. Electronic Materials Letters, 2015, 11(2):217224.

    [64] [64] Knauer A, Zeimer U, Kueller V, et al. MOVPE growth of AlxGa1-xN with x~0.5 on epitaxial laterally overgrown AlN/sapphire templates for UVLEDs[J]. Physica Status Solidi (c), 2014, 11(34): 377380

    [65] [65] Hakamata J, Kawase Y, Dong L, et al. Growth of highquality AlN and AlGaN films on sputtered AlN/sapphire templates via hightemperature annealing[J]. Physica Status Solidi (b), 2018:1700506.

    [66] [66] Kim M, Fujita T, Fukahori S, et al. AlGaNbased deep ultraviolet lightemitting diodes fabricated on patterned sapphire substrates[J]. Applied Physics Express, 2011, 4(9): 092102

    [67] [67] Kueller V, Knauer A, Brunner F, et al. Growth of AlGaN and AlN on patterned AlN/sapphire templates[J]. Journal of Crystal Growth, 2011, 315(1): 200203.

    [68] [68] Wang H M, Zhang J P, Chen C Q, et al. AlN/AlGaN superlattices as dislocation filter for lowthreadingdislocation thick AlGaN layers on sapphire[J]. Applied Physics Letters, 2002, 81(4): 604606.

    [69] [69] Fujioka A, Misaki T, Murayama T, et al. Improvement in output power of 280nm deep ultraviolet lightemitting diode by using AlGaN multi quantum wells[J]. Applied Physics Express, 2010, 3(4): 041001.

    [70] [70] Wang S, Zhang X, Zhu M, et al. Crackfree Sidoped nAlGaN film grown on sapphire substrate with hightemperature AlN interlayer[J]. OptikInternational Journal for Light and Electron Optics, 2015, 126(23): 36983702.

    [71] [71] Zhang J P, Wang H M, Gaevski M E, et al. Crackfree thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management[J]. Applied Physics Letters, 2002, 80(19): 3542.

    [72] [72] Katsuno T, Liu Y, Li D, et al. ntype conductivity control of AlGaN with high Al mole fraction[J]. Physica Status Solidi (c), 2006, 3(6): 14351438

    [73] [73] Cantu P, Keller S, Mishra U K, et al. Metalorganic chemical vapor deposition of highly conductive Al0. 65Ga0. 35N films[J]. Applied Physics Letters, 2003, 82(21): 36833685.

    [74] [74] Kim K H, Li J, Jin S X, et al. IIInitride ultraviolet lightemitting diodes with delta doping[J]. Applied Physics Letters, 2003, 83(3): 566568.

    [75] [75] Zhu S, Yan J, Zhang Y, et al. The effect of deltadoping on Sidoped Al rich nAlGaN on AlN template grown by MOCVD[J]. Physica Status Solidi (c), 2014, 11(34): 466468.

    [76] [76] Cho H K, Lee J Y, Jeon S R, et al. Influence of Mg doping on structural defects in AlGaN layers grown by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2001, 79.

    [77] [77] Fan A, Zhang X, Chen S, et al. Effects of Ⅴ/Ⅲ ratio and Cp2Mg flow rate on characteristics of nonpolar aplane Mgdeltadoped pAlGaN epilayer[J]. Superlattices and Microstructures, 2020, 145: 106632.

    [78] [78] Chen Y, Wu H, Han E, et al. High hole concentration in ptype AlGaN by indiumsurfactantassisted Mgdelta doping[J]. Applied Physics Letters, 2015, 106(16): 162102.

    [79] [79] Aoyagi Y, Takeuchi M, Iwai S, et al. High hole carrier concentration realized by alternative codoping technique in metal organic chemical vapor deposition[J]. Applied Physics Letters, 2011, 99(11):21525.

    [80] [80] Waldron E L, Graff J W, Schubert E F. Improved mobilities and resistivities in modulationdoped ptype AlGaN/GaN superlattices[J]. Applied Physics Letters, 2001, 79(17):27372739.

    [81] [81] Zheng T C, Lin W, Liu R, et al. Improved ptype conductivity in Alrich AlGaN using multidimensional Mgdoped superlattices[J]. Sentific Reports, 2016, 6:21897.

    [82] [82] Simon J, Protasenko V, Lian C, et al. Polarizationinduced hole doping in widebandgap uniaxial semiconductor heterostructures[J]. Science, 2010, 327(5961): 6064.

    [83] [83] Akasaki I and Amanor H, Conductivity control of AlGaN fabrication of AlGaN/GaN multiheterostructure and their application to UV/blue light emitting devices [J]. Mater. Res. Soc. Symp. Proc., 1992, 242:383394.

    [84] [84] Han J, Crawford M H, Shul R J, et al. AlGaN/GaN quantum well ultraviolet light emitting diodes[J]. Applied Physics Letters, 1998, 73(12):16881690.

    [85] [85] Kueller V, Knauer A, Brunner F, et al. Growth of AlGaN and A1 N on patterned AlN/sapphire templates[J].Journal of Crystal Growth, 2011, 315(1):200203.

    [86] [86] Manley P, Walde S, Hagedorn S, et al. Nanopatterned sapphire substrates in deepUV LEDs: is there an optical benefit? [J]. Opt Express, 2020, 28(3):36193635.

    [87] [87] Hagedorn S, Walde S, Susilo N, et al. Improving AlN crystal quality and strain management on nanopatterned sapphire substrates by hightemperature annealing for UVC lightemitting diodes [J]. Phys Status Solidi A, 2020, 217(7): 1900796.

    [88] [88] Takano T, Mino T, Sakai J, et al. Deepultraviolet lightemitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving lightextraction efficiency[J]. Appl Phys Express, 2017, 10(3):031002.

    [89] [89] Munshi A M, Kim D C, Heimdal C P, et al. Selective area growth of AlGaN nanopyramid arrays on graphene by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2018, 113(26):263102.

    [90] [90] Tchoe Y, Chung K, Lee K, et al. Freestanding and ultrathin inorganic lightemitting diode array[J]. NPG Asia Mater, 2019, 11:37.

    [91] [91] Ke W C, Liang Z Y, Tesfay S T, et al. Epitaxial growth and characterization of GaN thin films on graphene/sapphire substrate by embedding a hybridAlN buffer layer[J]. Appl Surf Sci, 2019, 494:644650.

    [92] [92] Chung K, Yoo H, Hyun J K, et al. Flexible GaN lightemitting diodes using GaN microdisks epitaxial laterally overgrown on graphene dots[J]. Adv Mater, 2016, 28(35):76887694.

    [93] [93] Chung K, Lee C H, Yi G C, Transferable GaN layers grown on ZnOcoated graphene layers for optoelectronic devices[J]. Science, 2010, 330(6004):655657.

    [94] [94] Chen Z L, Liu Z Q, Wei T B, et al. Improved epitaxy of AlN film for deepultraviolet lightemitting diodes enabled by graphene[J]. Adv Mater, 2019, 31(23):1807345.

    [95] [95] Hoiaas I M, Liudi M A, Vullum P E, et al. GaN/AIGaN nanocolumn ultraviolet lightemitting diode using doublelayer graphene as substrate and transparent electrode[J]. Nano Lett, 2019, 19(3):16491658.

    [96] [96] Zhao S R, Lu J Y, Hai X, et al. AlGaN nanowires for ultraviolet lightemitting:recent progress, challenges, and prospects[J]. Micromachines, 2020, 11(2):125.

    [97] [97] Sadaf S M, Zhao S, Wu Y, et al. An AlGaN coreshell tunnel junction nanowire lightemitting diode operating in the ultravioletC band [J]. Nano Lett, 2017, 17(2):12121218.

    [98] [98] Liu X, Le B H, Woo S Y, et al. Selective area epitaxy of AlGaN nanowire arrays across nearly the entire compositional range for deep ultraviolet photonics [J]. Opt Express, 2017, 25(24):30494.

    [99] [99] Ra Y H, Kang S, Lee C R, et al. Ultraviolet lightemitting diode using nonpolar AlGaN coreshell nanowire heterostructures[J]. Adv. Optical Mater., 2018, 6(14):1701391.

    [100] [100] Xu Z, Ding H, Sadler B M, et al. Analytical performance study of solar blind nonlineofsight ultraviolet shortrange communication links[J]. Optics Letters, 2008, 33(16):18601862.

    [101] [101] Zhou W, Li H, Yi X, et al. A criterion for UV detection of AC corona inception in a rodplane air gap[J]. Dielectrics and Electrical Insulation, IEEE Transactions on, 2011, 18(1):232237.

    [102] [102] Yuan R Z, Ma J S. Review of ultraviolet nonlineofsight communication[J]. China Communications, 2016, 13(6): 6375.

    [103] [103] Chen X H, Ren F F, Gu S L, et al. Review of galliumoxidebased solarblind ultraviolet photodetector[J]. Photonics Research, 2019, 7(4): 381415.

    [104] [104] Walker D, Zhang X, Kung P, et al. AlGaN ultraviolet photoconductors grown on sapphire[J]. Applied Physics Letters, 1996, 68(15): 21002101.

    [105] [105] Monroy E, Calle F, Munoz E, et al. AlGaN metalsemiconductormetal photodiodes[J]. Applied Physics Letters, 1999, 74(22):3401.

    [106] [106] Lee K H, Chang P, Chang S, et al. AlGaN/GaN schottky barrier UV photodetectors with a GaN sandwich layer[J]. IEEE Sensors Journal, 2009, 9(7): 814819.

    [107] [107] Walker D, Kumar V, Mi K, et al. Solarblind AlGaN photodiodes with very low cutoff wavelength[J]. Applied Physics Letters, 2000, 76(4): 403405.

    [108] [108] Huang Y, Chen D, Lu H, et al. Backilluminated separate absorption and multiplication AlGaN solarblind avalanche photodiodes[J]. Applied Physics Letters, 2012, 101(25): 253516.

    [109] [109] Qiu X, Song Z, Sun L, et al. Highgain AlGaN/GaN visibleblind avalanche heterojunction phototransistors[J]. Journal of Materials Science: Materials in Electronics, 2020, 31: 652657.

    [110] [110] Yoshikawa A, Ushida S, Nagase K, et al. Highperformance solarblind Al0.6Ga0.4N/Al0.5Ga0.5N MSM type photodetector[J]. Applied Physics Letters, 2017, 111(19): 191103.

    [111] [111] Yoshikawa A, Yamamoto Y, Murase T, et al. Highphotosensitivity AlGaNbased UV heterostructurefieldeffecttransistortype photosensors[J]. Japanese Journal of Applied Physics, 2016, 55(5s): 05FJ04.

    [112] [112] Munoz E, Monroy E, Garrido J A, et al. Photoconductor gain mechanisms in GaN ultraviolet detectors[J]. Applied Physics Letters, 1997, 71(7): 870872.

    [113] [113] Garrido J A, Monroy E, Izpura I, et al. Photoconductive gain modelling of GaN photodetectors[J]. Semiconductor Science and Technology, 1998, 13(6): 563568.

    [114] [114] Lim B W, Chen Q C. High responsitivity intrinsic photoconductors based on AlxGa1-xN[J]. Applied Physics Letters, 1996, 68(26):37613762.

    [115] [115] Seo I, Lee I, Park Y, et al. Characteristics of UV photodetector fabricated by Al0.3Ga0.7N/GaN heterostructure[J]. Journal of Crystal Growth, 2003, 252(1): 5157.

    [116] [116] Butun S, Tut T, Butun B, et al. Deepultraviolet Al0.75Ga0.25N photodiodes with low cutoff wavelength[J]. Applied Physics Letters, 2006, 88(12):1235031235032.

    [117] [117] Kuan T M, Chang S J, Su Y K, et al. High opticalgain AlGaN/GaN 2 dimensional electron gas photodetectors[J]. Japanese Journal of Applied Physics, 2003, 42(9A):55635564.

    [118] [118] Jiang K, Xiaojuan S, Zhang Z H, et al. Polarization enhanced AlGaN solarblind ultraviolet detectors[J]. Photonics Research, 2020, 8(7):1243.

    [119] [119] Ishiguro M, Ikeda K, Mizuno M, et al. Control of the detection wavelength in AlGaN/GaNbased heterofieldeffecttransistor photosensors[J]. Japanese Journal of Applied Physics, 2013, 52: 08 JF02.

    [120] [120] Narita T, Wakejima A, Egawa J. Ultraviolet photodetectors using transparent gate AIGaN/GaN high electron mobility transistor on silicon substrate[J]. Japanese Journal of Applied Physics, 2013, 52: 01AG06.

    [121] [121] Lee M L, Sheu J, Shu Y, et al. Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransitors with high optical gain and high rejection ratio[J]. Applied Physics Letters, 2008, 92(5): 053506.

    [122] [122] Tang S, Zhang L, Wu H, et al. Improved performance of ultraviolet AlGaN/GaN npn HPTs by a thin lightlydoped nAlGaN insertion layer[J]. AIP Advances, 2019, 9(12): 125239.

    [123] [123] Liu H Y, Wang Y H, Hsu W C. Suppression of dark current on AlGaN/GaN metalsemiconductormetal photodetectors[J]. IEEE Sensors Journal, 2015, 15(9):52025207.

    [124] [124] Monroy E, Walker D, Kung P, et al. Highquality visibleblind AlGaN pin photodiodes[J]. Applied Physics Letters, 1999, 74(8): 11711173.

    [125] [125] Mcclintock R, Yasan A, Mayes K, et al. High quantum efficiency AlGaN solarblind pin photodiodes[J]. Applied Physics Letters, 2004, 84(8):1248.

    [126] [126] Hou M, Qin Z, He C, et al. Study on AlGaN PININ solarblind avalanche photodiodes with Al0.45Ga0.55N multiplication layer[J]. Electronic Materials Letters, 2015, 11(6): 10531058.

    [127] [127] Wang X D, Chen X Y, Hou L W, et al. Role of ntype AlGaN layer in photo response mechanism for separate absorption and multiplication (SAM) GaN/AlGaN avalanche photodiode[J]. Opt Quantum Electron, 2015, 47, 13571365.

    [128] [128] Gao L L, Investigation of backilluminated AlGaN avalanche photodiodes with ptype graded AlxGa1-xN layer[J]. Opt. Quantum Electron. 2015, 47: 19331940.

    [129] [129] Shao Z G, Chen D J, Lu H, et al. Highgain AlGaN solarblind avalanche photodiodes[J]. IEEE Electron Device Letters, 2014, 35(3):372374.

    [130] [130] Kim J, Ji M H, Detchprohm T, et al. AlxGa1-xN ultraviolet avalanche photodiodes with avalanche gain greater than 105[J]. IEEE Photonics Technology Letters, 2015, 27(6):642645.

    [131] [131] Wu H, Wu W, Zhang H, et al. All AlGaN epitaxial structure solarblind avalanche photodiodes with high efficiency and high gain[J]. Applied Physics Express, 2016, 9(5):052103.1052103.3.

    [132] [132] Zheng J, Wang L, Wu X, et al. A PMTlike high gain avalanche photodiode based on GaN/AlN periodically stacked structure[J]. Applied Physics Letters, 2016, 24, 109(24): 241105.

    [133] [133] Reddy P, Breckenridge M H, Guo Q, et al. High gain, large area, and solar blind avalanche photodiodes based on Alrich AlGaN grown on AlN substrates[J]. Applied Physics Letters, 2020, 116(8):081101.

    [134] [134] Wu Y, Sun X, Jia Y, et al. Review of improved spectral response of ultraviolet photodetectors by surface plasmon[J]. Chinese Physics B, 2018, 27(12): 126101.

    [135] [135] Liu X, Li D, Sun X, et al. Tunable dipole surface plasmon resonances of silver nanoparticles by cladding dielectric layers[J]. Scientific Reports, 2015, 5(1): 1255512555.

    [136] [136] Zhang W, Xu J, Ye W, et al. Highperformance AlGaN metalsemiconductormetal solarblind ultraviolet photodetectors by localized surface plasmon enhancement[J]. Applied Physics Letters, 2015, 2, 106(2): 021112.

    [137] [137] Li D, Sun X, Jia Y, et al. Direct observation of localized surface plasmon field enhancement by Kelvin probe force microscopy[J]. LightScience & Applications, 2017, 6(8): e17038.

    [138] [138] Wu Y, Sun X, Shi Z, et al. In situ fabrication of Al surface plasmon nanoparticles by metalorganic chemical vapor deposition for enhanced performance of AlGaN deep ultraviolet detectors[J]. Nanoscale Advances. 2020, 2(5): 18541858.

    [139] [139] Brendel M, Helbling M, Knigge A, et al. Solarblind AlGaN MSM photodetectors with 24% external quantum efficiency at 0 V[J]. Electronics Letters, 2015, 51(20): 15981600.

    [140] [140] Aiello A, Wu Y, Mi Z, et al. Deep ultraviolet monolayer GaN/AlN diskinnanowire array photodiode on silicon[J]. Applied Physics Letters, 2020, 116(6): 061104.

    CLP Journals

    [1] LI Lu, XU Yu, CAO Bing, XU Ke. Epitaxial Growth and Optoelectronic Properties of AlGaN-Based Deep-Ultraviolet LED[J]. Journal of Synthetic Crystals, 2022, 51(7): 1158

    [2] LIANG Xiao, LI Siqi, WANG Zhongwei, SHAO Pengfei, CHEN Songlin, TAO Tao, XIE Zili, LIU Bin, CHEN Dunjun, ZHENG Youdou, ZHANG Rong, WANG Ke. Study on Molecular Beam Epitaxy of High Al Content AlGaN Thin Films and Si Doping[J]. Journal of Synthetic Crystals, 2023, 52(5): 783

    Tools

    Get Citation

    Copy Citation Text

    BEN Jianwei, SUN Xiaojuan, JIANG Ke, CHEN Yang, SHI Zhiming, ZANG Hang, ZHANG Shanli, LI Dabing, LYU Wei. AlGaN Based Wide Bandgap Photoelectric Materials and Devices[J]. Journal of Synthetic Crystals, 2020, 49(11): 2046

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Jan. 26, 2021

    The Author Email: BEN Jianwei (benjianwei@ciomp.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics