Acta Optica Sinica, Volume. 44, Issue 19, 1925005(2024)
Trans-Scale Photothermal Metamaterials: Mechanism, Regulation and Applications (Invited)
[9] Fu B Y, Bi Q H, Zheng S Y et al. Advanced metasurface imaging and display based on multidimensional light field manipulation(invited)[J]. Acta Optica Sinica, 44, 1400001(2024).
[11] Cui T J, Li L L, Liu S et al. Information metamaterial systems[J]. iScience, 23, 101403(2020).
[16] Song M X, Yu Y, Liu S D. Mie scattering characteristics of microsphere shells based on self-assembled dense-packed gold nanospheres[J]. Acta Optica Sinica, 44, 1429001(2024).
[19] Wang X, Liang H Y. Plasmonic nanourchin enhanced hot carrier generation and injection[J]. Chinese Journal of Lasers, 50, 0113016(2023).
[25] Chen C L, Zhou L, Yu J Y et al. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection[J]. Nano Energy, 51, 451-456(2018).
[26] Yao P C, Gong H, Wu Z Y et al. Greener and higher conversion of esterification via interfacial photothermal catalysis[J]. Nature Sustainability, 5, 348-356(2022).
[30] Søndergaard T, Novikov S M, Holmgaard T et al. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves[J]. Nature Communications, 3, 969(2012).
[31] Chou J B, Yeng Y X, Lee Y E et al. Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals[J]. Advanced Materials, 26, 8041-8045(2014).
[32] Zhou Y, Qin Z, Liang Z Z et al. Ultra-broadband metamaterial absorbers from long to very long infrared regime[J]. Light: Science & Applications, 10, 138(2021).
[33] Patel S K, Udayakumar A K, Mahendran G et al. Highly efficient, perfect, large angular and ultrawideband solar energy absorber for UV to MIR range[J]. Scientific Reports, 12, 18044(2022).
[35] Wen L Y, Xu R, Mi Y et al. Multiple nanostructures based on anodized aluminium oxide templates[J]. Nature Nanotechnology, 12, 244-250(2017).
[36] Xu R, Zeng Z Q, Lei Y. Well-defined nanostructuring with designable anodic aluminum oxide template[J]. Nature Communications, 13, 2435(2022).
[37] Kronenfeld J M, Rother L, Saccone M A et al. Roll-to-roll, high-resolution 3D printing of shape-specific particles[J]. Nature, 627, 306-312(2024).
[38] Qu Z, Zhang Z J, Liu R et al. High fatigue resistance in a titanium alloy via near-void-free 3D printing[J]. Nature, 626, 999-1004(2024).
[39] Machado T O, Stubbs C J, Chiaradia V et al. A renewably sourced, circular photopolymer resin for additive manufacturing[J]. Nature, 629, 1069-1074(2024).
[40] Zhang J Q, Bermingham M J, Otte J et al. Ultrauniform, strong, and ductile 3D-printed titanium alloy through bifunctional alloy design[J]. Science, 383, 639-645(2024).
[41] Zhu C, Jin J B, Wang Z et al. Supramolecular assembly of blue and green halide perovskites with near-unity photoluminescence[J]. Science, 383, 86-93(2024).
[43] Riley C T, Smalley J S T, Brodie J R J et al. Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 1264-1268(2017).
[44] Lin K T, Lin H, Yang T S et al. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion[J]. Nature Communications, 11, 1389(2020).
[45] Li J L, Jiang Y, Liu J et al. A photosynthetically active radiative cooling film[J]. Nature Sustainability, 7, 786-795(2024).
[46] Manzano C V, Ramos D, Pethö L et al. Controlling the color and effective refractive index of metal-anodic aluminum oxide (AAO)‒Al nanostructures: morphology of AAO[J]. The Journal of Physical Chemistry C, 122, 957-963(2018).
[47] Shin D, Kang G M, Gupta P et al. Thermoplasmonic and photothermal metamaterials for solar energy applications[J]. Advanced Optical Materials, 6, 1800317(2018).
[48] Wang Z X, Horseman T, Straub A P et al. Pathways and challenges for efficient solar-thermal desalination[J]. Science Advances, 5, eaax0763(2019).
[49] Savage K J, Hawkeye M M, Esteban R et al. Revealing the quantum regime in tunnelling plasmonics[J]. Nature, 491, 574-577(2012).
[52] Zhou L, Zhuang S D, He C Y et al. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion[J]. Nano Energy, 32, 195-200(2017).
[53] Zhou L, Li X Q, Ni G W et al. The revival of thermal utilization from the Sun: interfacial solar vapor generation[J]. National Science Review, 6, 562-578(2019).
[54] Modest M F, Mazumder S[M]. Radiative heat transfer(2021).
[55] Giliberti M, Lovisetti L[M]. Old quantum theory and early quantum mechanics: a historical perspective commented for the inquiring reader(2024).
[58] Bailly E, Hugonin J P, Coudevylle J R et al. 2D silver-nanoplatelets metasurface for bright directional photoluminescence, designed with the local Kirchhoff’s law[J]. ACS Nano, 18, 4903-4910(2024).
[59] Fan S H. Thermal photonics and energy applications[J]. Joule, 1, 264-273(2017).
[61] Wang Z Y, Clark J K, Ho Y L et al. Ultranarrow and wavelength-tunable thermal emission in a hybrid metal-optical tamm state structure[J]. ACS Photonics, 7, 1569-1576(2020).
[66] Li X Q, Xu W C, Tang M Y et al. Graphene oxide-based efficient and scalable solar desalination under one Sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 13953-13958(2016).
[68] Zhu M W, Li Y J, Chen G et al. Tree-inspired design for high-efficiency water extraction[J]. Advanced Materials, 29, 1704107(2017).
[70] Xu N, Zhang H R, Lin Z H et al. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation[J]. National Science Review, 8, nwab065(2021).
[71] Yang B, Zhang Z M, Liu P T et al. Flatband λ-Ti3O5 towards extraordinary solar steam generation[J]. Nature, 622, 499-506(2023).
[72] Li H, Zhang W X, Liao X et al. Kirigami enabled reconfigurable three-dimensional evaporator arrays for dynamic solar tracking and high efficiency desalination[J]. Science Advances, 10, eado1019(2024).
[73] Wang Y J, Wei T Q, Wang Y et al. Quasi-waffle solar distiller for durable desalination of seawater[J]. Science Advances, 10, eadk1113(2024).
[75] Wang F Y, Xu N, Zhao W et al. A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation[J]. Joule, 5, 1602-1612(2021).
[76] Wang X Y, Lin Z H, Gao J T et al. Solar steam-driven membrane filtration for high flux water purification[J]. Nature Water, 1, 391-398(2023).
[77] Li J L, Liang Y, Li W et al. Protecting ice from melting under sunlight via radiative cooling[J]. Science Advances, 8, eabj9756(2022).
[80] Ma J W, Zeng F R, Lin X C et al. A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling[J]. Science, 385, 68-74(2024).
[82] Yalçın R A, Blandre E, Joulain K et al. Colored radiative cooling coatings with nanoparticles[J]. ACS Photonics, 7, 1312-1322(2020).
[84] Chen Q X, Huang T Z, Cheng J et al. Translucent-colored radiative coolers based on localized surface plasmon resonances for energy-efficient windows[J]. Solar Energy, 253, 472-479(2023).
[85] Kim M J, Kim J T, Hong M J et al. Deep learning-assisted inverse design of nanoparticle-embedded radiative coolers[J]. Optics Express, 32, 16235-16247(2024).
[86] Wang T, Wu Y, Shi L et al. A structural polymer for highly efficient all-day passive radiative cooling[J]. Nature Communications, 12, 365(2021).
[90] Xiao D F, Jie Z S, Ma Z Y et al. Fabrication of homogeneous waffle-like silver composite substrate for Raman determination of trace chloramphenicol[J]. Mikrochimica Acta, 187, 593(2020).
[93] Chung C K, Yu C Y. Unique high-performance metal-nanoparticle-free SERS substrate with rapid-fabricated hybrid 3D-nano-micro-cavities anodic alumina for label-free detection[J]. Applied Surface Science, 635, 157731(2023).
[94] Wenderich K, Methods Mul G., mechanism, applications of photodeposition in photocatalysis. a review[J]. Chemical Reviews, 116, 14587-14619(2016).
[95] Yang J H, Wang D E, Han H X et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Accounts of Chemical Research, 46, 1900-1909(2013).
[96] Mu L C, Zhao Y, Li A L et al. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting[J]. Energy & Environmental Science, 9, 2463-2469(2016).
[97] Takata T, Jiang J Z, Sakata Y et al. Photocatalytic water splitting with a quantum efficiency of almost unity[J]. Nature, 581, 411-414(2020).
[98] Chen R T, Ren Z F, Liang Y et al. Spatiotemporal imaging of charge transfer in photocatalyst particles[J]. Nature, 610, 296-301(2022).
[100] Christopher P, Moskovits M. Hot charge carrier transmission from plasmonic nanostructures[J]. Annual Review of Physical Chemistry, 68, 379-398(2017).
[101] Wu K, Chen J, McBride J R et al. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition[J]. Science, 349, 632-635(2015).
[102] Boerigter C, Campana R, Morabito M et al. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis[J]. Nature Communications, 7, 10545(2016).
[103] Ostovar B, Lee S A, Mehmood A et al. The role of the plasmon in interfacial charge transfer[J]. Science Advances, 10, eadp3353(2024).
[104] Nam N N, Bui T L, Ho N T et al. Controlling photocatalytic reactions and hot electron transfer by rationally designing pore sizes and encapsulated plasmonic nanoparticle numbers[J]. The Journal of Physical Chemistry C, 123, 23497-23504(2019).
[105] Lou D Y, Xu A B, Fang Y S et al. Cobalt-sputtered anodic aluminum oxide membrane for efficient photothermal CO2 hydrogenation[J]. ChemNanoMat, 7, 1008-1012(2021).
[106] Li X D, Li L, Chu X Y et al. Photothermal CO2 conversion to ethanol through photothermal heterojunction-nanosheet arrays[J]. Nature Communications, 15, 5639(2024).
[107] Tang H, Shao G Z, Hinds B J. Highly efficient plasmonic membrane flow reactor[J]. Advanced Functional Materials, 31, 2100342(2021).
[109] Bu X C, Bai H. Recent progress of bio-inspired camouflage materials: from visible to infrared range[J]. Chemical Research in Chinese Universities, 39, 19-29(2023).
[110] Wei H Y, Xu Q, Chen D C et al. Easy preparation of anodic aluminum oxide photonic crystal films with tunable structural colors[J]. Optical Materials, 122, 111722(2021).
[112] Ding D W, He X P, Liang S J et al. Porous nanostructured composite film for visible-to-infrared camouflage with thermal management[J]. ACS Applied Materials & Interfaces, 14, 24690-24696(2022).
[114] Chen R T, Ni C W, Zhu J et al. Surface photovoltage microscopy for mapping charge separation on photocatalyst particles[J]. Nature Protocols, 19, 2250-2282(2024).
[115] Chi W W, Dong Y M, Liu B et al. A photocatalytic redox cycle over a polyimide catalyst drives efficient solar-to-H2O2 conversion[J]. Nature Communications, 15, 5316(2024).
Get Citation
Copy Citation Text
Chuanhao Yang, Haiyang Ma, Weixi Lu, Lin Zhou. Trans-Scale Photothermal Metamaterials: Mechanism, Regulation and Applications (Invited)[J]. Acta Optica Sinica, 2024, 44(19): 1925005
Category: OPTOELECTRONICS
Received: Jun. 18, 2024
Accepted: Aug. 12, 2024
Published Online: Oct. 10, 2024
The Author Email: Zhou Lin (linzhou@nju.edu.cn)
CSTR:32393.14.AOS241181