Chinese Journal of Lasers, Volume. 43, Issue 7, 701006(2016)

Experimental Research on Broadband Optical Source and Gain Spectrum for Optical Coherence Tomography at 1.7 μm Region

Zhang Peng1,2、*, Wang Tianshu1,3, Zhang Yan3, Liu Peng3, Li Xiaoyan1, Zhang Lizhong1, Tong Shoufeng1, and Jiang Huilin1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(25)

    [1] [1] Fercher A F, Drexler W, Hitzenberger C K, et al.. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 2003, 66(2): 239.

    [2] [2] Tanaka M, Hirano M, Murashima K, et al.. 1.7-μm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel[J]. Optics Express, 2015, 23(5): 6645-6655.

    [3] [3] Bouma B E, Tearney G J. Clinical imaging with optical coherence tomography[J]. Academic Radiology, 2002, 9(8): 942-953.

    [4] [4] Fujimoto J G, Boppart S A, Tearney G J, et al.. High resolution in vivo intra-arterial imaging with optical coherence tomography[J]. Heart, 1999, 82(2): 128-133.

    [5] [5] Tearney G J, Yabushita H, Houser S L, et al.. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography[J]. Circulation, 2003, 107(1): 113-119.

    [6] [6] Boppart S A, Luo W, Marks D L, et al.. Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer[J]. Breast Cancer Research and Treatment, 2004, 84(2): 85-97.

    [7] [7] Zuluaga A F, Follen M, Boiko I, et al.. Optical coherence tomography: A pilot study of a new imaging technique for noninvasive examination of cervical tissue[J]. American Journal of Obstetrics and Gynecology, 2005, 193(1): 83-88.

    [8] [8] Shi Boya, Meng Zhuo, Liu Tiegen, et al.. Non-distorted imaging depth of optical coherence tomography system in human dental tissues[J]. Acta Optica Sinica, 2014, 34(2): 0217001.

    [9] [9] Yang Shanshan, Zhu Rui, Mi Lei, et al.. Application of optical coherence tomography in the detection of the mural[J]. Acta Optica Sinica, 2015, 35(5): 0511005.

    [10] [10] Alexander V V, Ke K, Xu Z, et al.. Photothermolysis of sebaceous glands in human skin ex vivo with a 1708 nm Raman fiber laser and contact cooling[J]. Lasers in Surgery and Medicine, 2011, 43(6): 470-480.

    [11] [11] Workman J, Jr, Weyer L. Practical guide and spectral atlas for interpretive near-infrared spectroscopy[M]. Boca Raton: CRC Press, 2012.

    [12] [12] Bajraszewski T, Wojtkowski M, Szkulmowski M, et al.. Improved spectral optical coherence tomography using optical frequency comb[J]. Optics Express, 2008, 16(6): 4163-4176.

    [13] [13] Jung E J, Park J S, Jeong M Y, et al.. Spectrally-sampled OCT for sensitivity improvement from limited optical power[J]. Optics Express, 2008, 16(22): 17457-17467.

    [14] [14] Quan Z, Gao C X, Guo H T, et al.. 400 mW narrow-linewidth Tm-doped silica fiber laser output near 1750 nm with volume Bragg grating[J]. Scientific Reports, 2015, 5: 12034.

    [15] [15] Daniel J M, Simakov N, Tokurakawa M, et al.. Ultra-short wavelength operation of a two-micron thulium fiber laser[C]. 2014 Conference on Lasers and Electro-Optics, 2014: SW1N. 2.

    [16] [16] Li Z, Alam S, Daniel J M O, et al.. 90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers[C]. European Conference on Optical Communication, 2014: 1-3.

    [17] [17] Li Z, Jung Y, Simakov N, et al.. Extreme short wavelength operation (1.65-1.7 μm) of silica-based thulium-doped fiber amplifier[C]. IEEE Optical Fiber Communication Conference, 2015.

    [18] [18] Abeeluck A K, Headley C, Jrgensen C G. High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser[J]. Optics letters, 2004, 29(18): 2163-2165.

    [19] [19] Kawagoe H, Ishida S, Aramaki M, et al.. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography[J]. Biomedical Optics Express, 2014, 5(3): 932-943.

    [20] [20] Dong P, Gui L, Xiao X, et al.. Experimental investigation of supercontinuum generation in highly nonlinear dispersion-shifted fiber pumped by spectrum-sliced amplified spontaneous emission[J]. Optics Communications, 2009, 282(14): 3007-3011.

    [21] [21] Tilma B W, Jiao Y, Kotani J, et al.. Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 wavelength region[J]. IEEE Journal of Quantum Electronics, 2012, 48(2): 87-98.

    [22] [22] Yamada M, Ono H, Ono J. 1.7 μm band optical fiber amplifier[C]. IEEE Optical Fiber Communication Conference, 2014: 1-3.

    [23] [23] Dianov E M, Firstov S V, Alyshev S V, et al.. A new bismuth-doped fibre laser, emitting in the range 1625-1775 nm[J]. Quantum Electronics, 2014, 44(6): 503-504.

    [24] [24] Agrawal G P. Nonlinear fiber optics[M]. New York: Academic Press, 2007.

    [25] [25] Long Qingyun, Wu Tingwan, Hu Sumei, et al.. Threshold characteristics of forward-pumped fiber Raman amplifier[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030603.

    Tools

    Get Citation

    Copy Citation Text

    Zhang Peng, Wang Tianshu, Zhang Yan, Liu Peng, Li Xiaoyan, Zhang Lizhong, Tong Shoufeng, Jiang Huilin. Experimental Research on Broadband Optical Source and Gain Spectrum for Optical Coherence Tomography at 1.7 μm Region[J]. Chinese Journal of Lasers, 2016, 43(7): 701006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Mar. 1, 2016

    Accepted: --

    Published Online: Jul. 13, 2016

    The Author Email: Peng Zhang (zhangpeng@cust.edu.cn)

    DOI:10.3788/cjl201643.0701006

    Topics