Laser & Infrared, Volume. 55, Issue 6, 960(2025)

Blind artifact removal for JPEG Pleno light field coding distortion

LAI Jia-long1, JIANG Zhi-di2, and JIANG Gang-yi1、*
Author Affiliations
  • 1Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211, China
  • 2College of Information Engineering, College of Science and Technology, Ningbo University, Ningbo 315212, China
  • show less
    References(24)

    [1] [1] Xiang J J, Jiang G Y, Yu M, et al. No-Reference light field image quality assessment using Four-Dimensional sparse transform[J]. IEEE Transactions on Multimedia, 2023, 25: 457-472.

    [2] [2] Jamil S, Piran M J, Rahman M U, et al. Learning-driven lossy image compression: a comprehensive survey[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106361.

    [3] [3] Gao W, Fan S L, Li G, et al. A thorough benchmark and a new model for light field saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(7): 8003-8019.

    [4] [4] Dong C, Deng Y B, Loy C C, et al. Compression artifacts reduction by a deep convolutional network[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago: CVF, 2015: 576-584.

    [5] [5] Zheng B L, Sun R, Tian X, et al. S-Net: a scalable convolutional neural network for JPEG compression artifact reduction[J]. Journal of Electronic Imaging, 2018, 27(4): 043037.

    [6] [6] Li B, Shi Y, Wang B, et al. RGSR: a two-step lossy JPG image super-resolution based on noise reduction[J]. Neurocomputing, 2021, 419: 322-334.

    [7] [7] Amaranageswarao G, Deivalakshmi S, Ko S B. Joint restoration convolutional neural network for low-quality image super resolution[J]. The Visual Computer, 2022, 38(1): 31-50.

    [8] [8] Sun M D, He X H, Xiong S H, et al. Reduction of JPEG compression artifacts based on DCT coefficients prediction[J]. Neurocomputing, 2020, 384: 335-345.

    [9] [9] Yang G, Lin L, Wu C, et al. Dual-Domain learning for JPEG artifacts removal[C]//Neural Information Processing. Singapore: Springer, 2023: 556-568.

    [10] [10] Galteri L, Seidenari L, Bertini M, et al. Deep universal generative adversarial compression artifact removal[J]. IEEE Transactions on Multimedia, 2019, 21(8): 2131-2145.

    [11] [11] Kim Y, Soh J W, Park J, et al. A Pseudo-Blind convolutional neural network for the reduction of compression artifacts[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(4): 1121-1135.

    [12] [12] Ehrlich M, Davis L, Lim S N, et al. Quantization guided JPEG artifact correction[C]//Computer Vision-ECCV 2020. Cham: Springer, 2020: 293-309.

    [13] [13] Yoon J, Cho N I. JPEG artifact reduction based on deformable offset gating network controlled by a variational autoencoder[J]. IEEE Access, 2023, 11: 30282-30291.

    [14] [14] Kawar B, Song J, Ermon S, et al. Jpeg artifact correction using denoising diffusion restoration models[DB/OL]. (2022-09-23). https://arxiv.org/abs/2209.11888.

    [15] [15] De Carvalho M B, Pagliari C L, De O. E. Alves G, et al. Supporting wider baseline light fields in JPEG pleno with a novel slanted 4D-DCT coding mode[J]. IEEE Access, 2023, 11: 28294-28317.

    [16] [16] Li Y, Mathew R, Taubman D. JPEG pleno light field encoder with mesh basedview warping[C]//2023 IEEE International Conference on Image Processing (ICIP). Kuala Lumpur: IEEE, 2023: 2100-2104.

    [17] [17] Stepanov M, Valenzise G, Dufaux F. Compression of light fields[M]//Valenzise G, Alain M, Zerman E, et al. Immersive Video Technologies. Amsterdam: Academic Press, 2023: 201-226.

    [18] [18] Astola P, Da S C L A, Da S E A B, et al. JPEG pleno: standardizing a coding framework and tools for plenoptic imaging modalities[J]. ITU Journal: ICT Discoveries, 2020, 3(1).

    [19] [19] Wallace G K. The JPEG still picture compression standard[J]. Communications of the ACM, 1991, 34(4): 30-44.

    [20] [20] Wang Y Q, Wang L G, Wu G C, et al. Disentangling light fields for super-resolution and disparity estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(1): 425-443.

    [21] [21] Song C H, Han H J, Avrithis Y. All the attention you need: global-local, spatial-channel attention for image retrieval[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: CVF, 2022: 2754-2763.

    [22] [22] ISO/IEC. Information technology—Plenoptic image coding system (JPEG Pleno)-Part 3: Conformance testing: ISO/IEC 21794-3: 2021[R/OL]. https://www.iso.org/standard/74533.html.

    [23] [23] Pereira F, Pagliari C, da Silva E A B, et al. JPEG Pleno light field coding common test conditions v3.2[J]. Doc. ISO/IEC JTC, 2019, 1.

    [24] [24] Liang Z Y, Wang Y Q, Wang L G, et al. Learning Non-Local Spatial-Angular correlation for light field image Super-Resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: CVF, 2023: 12376-12386.

    Tools

    Get Citation

    Copy Citation Text

    LAI Jia-long, JIANG Zhi-di, JIANG Gang-yi. Blind artifact removal for JPEG Pleno light field coding distortion[J]. Laser & Infrared, 2025, 55(6): 960

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 15, 2024

    Accepted: Jul. 30, 2025

    Published Online: Jul. 30, 2025

    The Author Email: JIANG Gang-yi (jianggangyi@126.com)

    DOI:10.3969/j.issn.1001-5078.2025.06.020

    Topics