Journal of Synthetic Crystals, Volume. 49, Issue 11, 2024(2020)
Liquid Phase Growth of GaN Single Crystal
[1] [1] Mukai T, Takekawa K, Nakamura S. InGaNbased blue lightemitting diodes grown on epitaxially laterally overgrown GaN substrates[J]. Japanese Journal of Applied Physics, 1998, 37(7b): L839L841.
[2] [2] Akasaki I, Amano H. Breakthroughs in improving crystal quality of GaN and invention of the pn junction bluelightemitting diode[J]. Japanese Journal of Applied Physics, 2006, 45(12): 90019010.
[3] [3] Zhao Y J, Fu H Q, Wang G T, et al. Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN lightemitting diodes[J]. Advances in Optics and Photonics, 2018, 10(1): 246.
[4] [4] Queren D, Avramescu A, Bruderl G, et al. 500 nm electrically driven InGaN based laser diodes[J]. Applied Physics Letters, 2009, 94(8): 081119.
[5] [5] Pearton S J, Ren F, Zhang A P, et al. Fabrication and performance of GaN electronic devices[J]. Materials Science and Engineering R: Reports, 2000, 30(3/4/5/6): 55212.
[6] [6] Efthymiou L, Longobardi G, Camuso G, et al. On the physical operation and optimization of the pGaN gate in normallyoff GaN HEMT devices[J]. Applied Physics Letters, 2017, 110(12): 123502.
[7] [7] Anderson T J, Chowdhury S, Aktas O, et al. GaN power devicescurrent status and future directions[J]. The Electrochemical Society Interface,2018, 27(4): 4347.
[8] [8] Liu L, Edgar J H. Substrates for gallium nitride epitaxy[J]. Materials Science and Engineering: R: Reports, 2002, 37(3): 61127.
[9] [9] Scholz F. Semipolar GaN grown on foreign substrates: a review[J]. Semiconductor Science and Technology, 2012, 27(2): 024002.
[10] [10] Yim W M, Paff R J. Thermal expansion of AlN, sapphire, and silicon[J]. Journal of Applied Physics, 1974, 45(3): 14561457.
[11] [11] Leszczynski M, Suski T, Teisseyre H, et al. Thermal expansion of gallium nitride[J]. Journal of Applied Physics, 1994, 76(8): 49094911.
[12] [12] Usami S, Ando Y, Tanaka A, et al. Correlation between dislocations and leakage current of pn diodes on a freestanding GaN substrate[J]. Applied Physics Letters, 2018, 112(18): 182106.
[13] [13] Bockowski M. High nitrogen pressure solution growth of GaN[J]. Japanese Journal of Applied Physics, 2014, 53(10): 100203.
[14] [14] Wang B G, Callahan M J. Ammonothermal synthesis of IIINitride crystals[J]. Crystal Growth & Design, 2006, 6(6): 12271246.
[15] [15] Zhang S Y, Hintze F, Schnick W, et al. Intermediates in ammonothermal GaN crystal growth under ammonoacidic conditions[J]. European Journal of Inorganic Chemistry, 2013, 2013(31): 53875399.
[16] [16] Ehrentraut D, Kagamitani Y, Yokoyama C, et al. Physicochemical features of the acid ammonothermal growth of GaN[J]. Journal of Crystal Growth, 2008, 310(5): 891895.
[17] [17] Yoshida K, Aoki K, Fukuda T. Hightemperature acidic ammonothermal method for GaN crystal growth[J]. Journal of Crystal Growth, 2014, 393: 9397.
[18] [18] Hashimoto T, Saito M, Fujito K, et al. Seeded growth of GaN by the basic ammonothermal method[J]. Journal of Crystal Growth, 2007, 305(2): 311316.
[19] [19] Ehrentraut D, Fukuda T. Ammonothermal crystal growth of gallium nitrideA brief discussion of critical issues[J]. Journal of Crystal Growth, 2010, 312(18): 25142518.
[20] [20] Tomida D, Kuribayashi T, Suzuki K, et al. Effect of halogen species of acidic mineralizer on solubility of GaN in supercritical ammonia[J]. Journal of Crystal Growth, 2011, 325(1): 5254.
[21] [21] Bao Q X, Saito M, Hazu K J, et al. Ammonothermal crystal growth of GaN using an NH4F mineralizer[J]. Crystal Growth & Design, 2013, 13(10): 41584161.
[22] [22] Dwilinski R, Doradzinski R, Garczynski J, et al. Excellent crystallinity of truly bulk ammonothermal GaN[J]. Journal of Crystal Growth, 2008, 310(17): 39113916.
[23] [23] Tomida D, Kuroda K, Nakamura K, et al. Temperature dependent control of the solubility of gallium nitride in supercritical ammonia using mixed mineralizer[J]. Chemistry Central Journal, 2018, 12(1): 16.
[24] [24] Dwilinski R, Wysmolek A, Baranowski J, et al. GaN synthesis by ammonothermal method[J]. Acta Physica Polonica A, 1995, 88(5): 833836.
[25] [25] Hashimoto T, Fujito K, Saito M, et al. Ammonothermal growth of GaN on an over1inch seed crystal[J]. Japanese Journal of Applied Physics, 2005, 44: L1570L1572.
[26] [26] Wang B G, Callahan M J, Rakes K D, et al. Ammonothermal growth of GaN crystals in alkaline solutions[J]. Journal of Crystal Growth, 2006, 287(2): 376380.
[27] [27] Hashimoto T, Feng W, Speck J S, et al. Growth of bulk GaN crystals by the basic ammonothermal method[J]. Japanese Journal of Applied Physics, 2007: L889L891.
[28] [28] Dwilinski R, Doradzinski R, Garczynski J, et al. Properties of truly bulk GaN monocrystals grown by ammonothermal method[J]. Physica Status Solidi (c), 2009,6(12): 26612664.
[29] [29] Bulk GaN: Ammonothermal trumps HVPE[J]. Compound Semiconductor, 2010, 2: 1216.
[30] [30] Kyma responds to CS article entitled “Bulk GaN: Ammonothermal trumps HVPE”[J]. Compound Semiconductor, 2010, 3: 93.
[31] [31] Dwilinski R, Doradzinski R, Garczynski J, et al. Recent achievements in AMMONObulk method[J]. Journal of Crystal Growth, 2010, 312(18): 24992502.
[32] [32] Zajac M, Kucharski R, Grabianska K, et al. Basic ammonothermal growth of gallium nitridestate of the art, challenges, perspectives[J]. Progress in Crystal Growth and Characterization of Materials, 2018, 64(3): 6374.
[33] [33] Pimputkar S, Kawabata S, Speck J S, et al. Improved growth rates and purity of basic ammonothermal GaN[J]. Journal of Crystal Growth, 2014, 403:717.
[34] [34] Hashimoto T, Letts E R, Key D, et al. Two inch GaN substrates fabricated by the near equilibrium ammonothermal (NEAT) method[J]. Japanese Journal of Applied Physics, 2019, 588(SC): SC1005.
[35] [35] Kucharski R, Zajac M, Doradzinski R, et al. Nonpolar and semipolar ammonothermal GaN substrates[J]. Semiconductor Science and Technology, 2012: 024007.
[36] [36] Li T K, Ren G Q, Su X J, et al. Growth behavior of ammonothermal GaN crystals grown on nonpolar and semipolar HVPE GaN seeds[J].CrystEngComm, 2019, 33(33):48744879.
[37] [37] Pimputkar S, Suihkonen S, Imade M, et al. Free electron concentration dependent subbandgap optical absorption characterization of bulk GaN crystals[J]. Journal of Crystal Growth, 2015, 432: 4953.
[38] [38] Sintonen S, Kivisaari P, Pimputkar S, et al. Incorporation and effects of impurities in different growth zones within basic ammonothermal GaN[J]. Journal of Crystal Growth, 2016, 456: 4350.
[39] [39] Krysko M, Sarzynski M, Domagala J, et al. The influence of lattice parameter variation on microstructure of GaN single crystals[J]. Journal of Alloys Compounds, 2005, 401(1/2): 261.
[40] [40] van de Walle Chris G. Effects of impurities on the lattice parameters of GaN[J]. Physical Review B, 2003, 68(16): 165209.
[41] [41] Darakchieva V, Monemar B, Usui A. On the lattice parameters of GaN[J]. Applied Physics Letters, 2007, 91(3): 031911.
[42] [42] Jezowski A, Churiukova O, Mucha J, et al. Thermal conductivity of heavily doped bulk crystals GaN:O. Free carriers contribution[J]. Materials Research Express, 2015, 2(8): 085902.
[43] [43] Tuomisto F, Makkonen I. Defect identification in semiconductors with positron annihilation: experiment and theory[J]. Reviews of Modern Physics, 2013, 85(4): 1583.
[44] [44] Purdy A P, Jouet R J, George C F. Ammonothermal recrystallization of gallium nitride with acidic mineralizers[J]. Crystal Growth and Design, 2002, 2(2): 141145.
[45] [45] Purdy A P. Ammonothermal synthesis of cubic gallium nitride[J]. Chemistry of Materials, 1999, 11(7): 16481651.
[46] [46] Yoshikawa A, Ohshima E, Fukuda T H, et al.[J]. Journal of Crystal Growth, 2004, 260: 6772.
[47] [47] Kagamitani Y, Ehrentraut D, Yoshikawa A, et al. Ammonothermal epitaxy of thick GaN film using NH4Cl mineralizer[J]. Japanese Journal of Applied Physics, 2006, 45(5A): 40184020.
[48] [48] Ehrentraut D, Kagamitani Y, Fukuda T, et al. Reviewing recent developments in the acid ammonothermal crystal growth of gallium nitride[J]. Journal of Crystal Growth, 2008, 310(17): 39023906.
[49] [49] Ehrentraut D, Pakalapati R T, Kamber D S, et al. High quality, low cost ammonothermal bulk GaN substrates[J]. Japanese Journal of Applied Physics, 2013, 52(8S): 08 JA01.
[50] [50] Jiang W, Ehrentraut D, Kamber D S, et al. Ammonothermal bulk GaN substrates for LEDs[J]. Proc of SPIE, 2014, 9003: 900313.
[51] [51] Jiang W K, Ehrentraut D, Cook J, et al. Transparent, conductive bulk GaN by high temperature ammonothermal growth[J]. Physica Status Solid(b), 2015, 252(5): 10691074.
[52] [52] Mikawa Y, Ishinabe T, Kagamitani Y, et al. Recent progress of large size and low dislocation bulk GaN growth[C]//SPIE OPTO.Proc SPIE 11280, Gallium Nitride Materials and Devices XV, San Francisco, California, USA. 2020, 1128: 1128002.
[53] [53] Yamane H, Shimada M, Clarke S J, et al. Preparation of GaN single crystals using a Na flux[J]. Chemistry of Materials, 1997, 9(2):413416.
[54] [54] Kawamura F, Morishita M, Omae K, et al. Novel liquid phase epitaxy (LPE) growth method for growing large GaN single crystals: introduction of the flux film coatedliquid phase epitaxy (FFCLPE)method[J]. Japanese Journal of Applied Physics, 2003, 42(Part 2,No.8A): L879L881.
[55] [55] Yoshida T, Imanishi M, Kitamura T, et al. Development of GaN substrate with a large diameter and small orientation deviation[J]. Physica Status Solidi (b), 2017, 254(8): 1600671.
[56] [56] Yamane H, Kinno D, Shimada M, et al. GaN single crystal growth from a NaGa melt[J]. Journal of Materials Science, 2000, 35(4):801808.
[57] [57] Morishita M, Kawamura F, Kawahara M, et al. The influences of supersaturation on LPE growth of GaN single crystals using the Na flux method[J]. Journal of Crystal growth, 2004, 270(3/4): 402408.
[58] [58] Murakami K, Ogawa S, Imanishi M, et al. Increase in the growth rate of GaN crystals by using gaseous methane in the Na flux method[J]. Japanese Journal of Applied Physics, 2017, 56(5):055502
[59] [59] Morishita M, Kawamura F, Kawahara M, et al. Promoted nitrogen dissolution due to the addition of Li or Ca to GaNa melt: some effects of additives on the growth of GaN single crystals using the sodium flux method[J]. Journal of Crystal growth, 2005, 284(1/2): 9199.
[60] [60] Gejo R, Kawamura F, Kawahara M, et al. Effect of thermal convection on liquid phase epitaxy of GaN by Na flux method[J]. Japanese Journal of Applied Physics, 2007, 46(12): 76897692.
[61] [61] Kawamura F, Morishita M, Tanpo M, et al. Effect of carbon additive on increases in the growth rate of 2 in GaN single crystals in the Na flux method[J]. Journal of Crystal Growth, 2008, 310(17): 39463949.
[62] [62] Imade M, Murakami K, Matsuo D, et al. Centimetersized bulk GaN single crystals grown by the Naflux method with a necking technique[J]. Crystal Growth & Design, 2012, 12(7): 37993805.
[63] [63] Imade M, Imanishi M, Todoroki Y, et al. Fabrication of lowcurvature 2 in. GaN wafers by Naflux coalescence growth technique[J]. Applied Physics Express, 2014, 7(3): 035503.
[64] [64] Sato T, Nakamura K, Imanishi M, et al. Homoepitaxial growth of GaN crystals by Naflux dipping method[J]. Japanese Journal of Applied Physics, 2015, 54(10):105501.
[65] [65] Imanishi M, Yoshida T, Kitamura T, et al. Homoepitaxial hydride vapor phase epitaxy growth on GaN wafers manufactured by the Naflux method[J]. Crystal Growth & Design, 2017, 17(7): 38063811.
[66] [66] Maruyama M, Nakamura K, Che S, et al. Fabrication of highquality {11-22} GaN substrates using the Na flux method[J]. Applied Physics Express, 2016, 9(5): 055501.
[67] [67] Yamada T, Imanishi M, Murakami K, et al. Fabrication of a 1.5inch freestanding GaN substrate by selective dissolution of sapphire using Li after the Naflux growth[J]. Journal of Crystal Growth, 2020, 533: 125462.
[68] [68] Liu Z L, Ren G Q, Shi L, et al. Effect of carbon types on the generation and morphology of GaN polycrystals grown using the Na flux method[J]. CrystEngComm, 2015, 17(5): 10301036.
Get Citation
Copy Citation Text
REN Guoqiang, LIU Zongliang, LI Tengkun, XU Ke. Liquid Phase Growth of GaN Single Crystal[J]. Journal of Synthetic Crystals, 2020, 49(11): 2024
Category:
Received: --
Accepted: --
Published Online: Jan. 26, 2021
The Author Email: REN Guoqiang (gqren2008@sinano.ac.cn)
CSTR:32186.14.