The Journal of Light Scattering, Volume. 33, Issue 1, 1(2021)
Recent Advances of Raman Spectroscopy in Structural Characterization of Two-dimensional Materials
[1] [1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.
[2] [2] Novoselov K S, Fal V, Colombo L, et al. A roadmap for graphene [J]. Nature, 2012, 490(7419): 192-200.
[3] [3] Tan C, Cao X, Wu X-J, et al. Recent advances in ultrathin two-dimensional nanomaterials [J]. Chemical Reviews, 2017, 117(9): 6225-6331.
[4] [4] Elias C, Valvin P, Pelini T, et al. Direct band-gap crossover in epitaxial monolayer boron nitride [J]. Nature Communications, 2019, 10(1): 1-7.
[5] [5] Tang H, Liang D, Qiu R L, et al. Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons [J]. ACS Nano, 2011, 5(9): 7510-7516.
[6] [6] Ribeiro H B, Pimenta M A, de Matos C J. Raman spectroscopy in black phosphorus [J]. Journal of Raman Spectroscopy, 2018, 49(1): 76-90.
[7] [7] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor [J]. Physical Review Letters, 2010, 105(13): 136805.
[8] [8] Ruppert C, Aslan O B, Heinz T F. Optical properties and band gap of single-and few-layer MoTe2 crystals [J]. Nano Letters, 2014, 14(11): 6231-6236.
[9] [9] Zheng F, Cai C, Ge S, et al. On the quantum spin hall gap of monolayer 1T′‐WTe2 [J]. Advanced Materials, 2016, 28(24): 4845-4851.
[10] [10] Fan X, Chen H, Zhao L, et al. Quick suppression of superconductivity of NbSe2 by Rb intercalation [J]. Solid State Communications, 2019, 297: 6-10.
[11] [11] Gupta A, Sakthivel T, Seal S. Recent development in 2D materials beyond graphene [J]. Progress in Materials Science, 2015, 73: 44-126.
[12] [12] Novoselov K, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures [J]. Science, 2016, 353(6298):
[14] [14] Tan P-H. Raman Spectroscopy of two-dimensional materials [M]. Springer, 2018.
[15] [15] Malard L, Pimenta M A, Dresselhaus G, et al. Raman spectroscopy in graphene [J]. Physics Reports, 2009, 473(5-6): 51-87.
[16] [16] Li X L, Han W P, Wu J B, et al. Layer‐number dependent optical properties of 2D materials and their application for thickness determination [J]. Advanced Functional Materials, 2017, 27(19): 1604468.
[17] [17] Xia J, Yan J, Shen Z X. Transition metal dichalcogenides: structural, optical and electronic property tuning via thickness and stacking [J]. FlatChem, 2017, 4: 1-19.
[18] [18] Sarkar S, Pradeepa H, Nayak G, et al. Evolution of inter-layer coupling in artificially stacked bilayer MoS2 [J]. Nanoscale Advances, 2019, 1(11): 4398-4405.
[19] [19] Tomori H, Nakamura K, Kanda A. Improved method for determining crystallographic orientation of strained graphene by Raman spectroscopy [J]. Applied Physics Express, 2020, 13(7): 075006.
[20] [20] Choi Y, Kim K, Lim S Y, et al. Complete determination of the crystallographic orientation of ReX2 (X= S, Se) by polarized Raman spectroscopy [J]. Nanoscale Horizons, 2020, 5(2): 308-315.
[21] [21] Beams R, Canado L G, Novotny L. Raman characterization of defects and dopants in graphene [J]. Journal of Physics: Condensed Matter, 2015, 27(8): 083002.
[22] [22] Lan Y, Zondode M, Deng H, et al. Basic concepts and recent advances of crystallographic orientation determination of graphene by Raman spectroscopy [J]. Crystals, 2018, 8(10): 375.
[23] [23] Iqbal M W, Shahzad K, Akbar R, et al. A review on Raman finger prints of doping and strain effect in TMDCs [J]. Microelectronic Engineering, 2020, 219: 111152.
[24] [24] Li J, Su W, Chen F, et al. Atypical defect-mediated photoluminescence and resonance raman spectroscopy of monolayer WS2 [J]. The Journal of Physical Chemistry C, 2019, 123(6): 3900-3907.
[25] [25] Canado L G, Da Silva M G, Ferreira E H M, et al. Disentangling contributions of point and line defects in the Raman spectra of graphene-related materials [J]. 2D Materials, 2017, 4(2): 025039.
[26] [26] Wu J-B, Lin M-L, Cong X, et al. Raman spectroscopy of graphene-based materials and its applications in related devices [J]. Chemical Society Reviews, 2018, 47(5): 1822-1873.
[27] [27] Wang Y Y, Ni Z H, Yu T, et al. Raman studies of monolayer graphene: the substrate effect [J]. The Journal of Physical Chemistry C, 2008, 112(29): 10637-10640.
[28] [28] Ferrari A C, Meyer J, Scardaci V, et al. Raman spectrum of graphene and graphene layers [J]. Physical Review Letters, 2006, 97(18): 187401.
[29] [29] Hao Y, Wang Y, Wang L, et al. Probing layer number and stacking order of few‐layer graphene by Raman spectroscopy [J]. Small, 2010, 6(2): 195-200.
[30] [30] Graf D, Molitor F, Ensslin K, et al. Spatially resolved Raman spectroscopy of single-and few-layer graphene [J]. Nano Letters, 2007, 7(2): 238-242.
[31] [31] Wang Y, Ni Z, Shen Z, et al. Interference enhancement of Raman signal of graphene [J]. Applied Physics Letters, 2008, 92(4): 043121.
[32] [32] Gupta A, Chen G, Joshi P, et al. Raman scattering from high-frequency phonons in supported n-graphene layer films [J]. Nano Letters, 2006, 6(12): 2667-2673.
[33] [33] Lee C, Yan H, Brus L E, et al. Anomalous lattice vibrations of single-and few-layer MoS2 [J]. ACS Nano, 2010, 4(5): 2695-2700.
[34] [34] Tan P, Han W, Zhao W, et al. The shear mode of multilayer graphene [J]. Nature Materials, 2012, 11(4): 294-300.
[35] [35] Zhang X, Han W, Wu J, et al. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2 [J]. Physical Review B, 2013, 87(11): 115413.
[36] [36] Wu J-B, Zhang X, Ijs M, et al. Resonant Raman spectroscopy of twisted multilayer graphene [J]. Nature Communications, 2014, 5(1): 1-8.
[37] [37] Zhang X, Tan Q-H, Wu J-B, et al. Review on the Raman spectroscopy of different types of layered materials [J]. Nanoscale, 2016, 8(12): 6435-6450.
[38] [38] Song Q, Tan Q, Zhang X, et al. Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe2 [J]. Physical Review B, 2016, 93(11): 115409.
[39] [39] Ling X, Liang L, Huang S, et al. Low-frequency interlayer breathing modes in few-layer black phosphorus [J]. Nano Letters, 2015, 15(6): 4080-4088.
[40] [40] Stenger I, Schué L, Boukhicha M, et al. Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals [J]. 2D Materials, 2017, 4(3): 031003.
[41] [41] Molina-Sanchez A, Wirtz L. Phonons in single-layer and few-layer MoS2 and WS2 [J]. Physical Review B, 2011, 84(15): 155413.
[42] [42] Lui C H, Li Z, Mak K F, et al. Observation of an electrically tunable band gap in trilayer graphene [J]. Nature Physics, 2011, 7(12): 944-947.
[43] [43] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7(11): 699-712.
[44] [44] Hou Y, Ren X, Fan J, et al. Preparation of Twisted Bilayer Graphene via the Wetting Transfer Method [J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40958-40967.
[45] [45] Lui C H, Li Z, Chen Z, et al. Imaging stacking order in few-layer graphene [J]. Nano Letters, 2011, 11(1): 164-169.
[46] [46] Zhang X, Han W-P, Qiao X-F, et al. Raman characterization of AB-and ABC-stacked few-layer graphene by interlayer shear modes [J]. Carbon, 2016, 99: 118-122.
[47] [47] Li G, Luican A, Dos Santos J L, et al. Observation of Van Hove singularities in twisted graphene layers [J]. Nature Physics, 2010, 6(2): 109-113.
[48] [48] Liao L, Wang H, Peng H, et al. van Hove singularity enhanced photochemical reactivity of twisted bilayer graphene [J]. Nano Letters, 2015, 15(8): 5585-5589.
[49] [49] Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 80-84.
[50] [50] Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 43-50.
[51] [51] Hod O, Meyer E, Zheng Q, et al. Structural superlubricity and ultralow friction across the length scales [J]. Nature, 2018, 563(7732): 485-492.
[52] [52] Kim K, Coh S, Tan L Z, et al. Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure [J]. Physical Review Letters, 2012, 108(24): 246103.
[53] [53] Carozo V, Almeida C M, Ferreira E H, et al. Raman signature of graphene superlattices [J]. Nano Letters, 2011, 11(11): 4527-4534.
[54] [54] Nguyen T A, Lee J-U, Yoon D, et al. Excitation energy dependent Raman signatures of ABA-and ABC-stacked few-layer graphene [J]. Scientific Reports, 2014, 4: 4630.
[55] [55] Lui C H, Ye Z, Keiser C, et al. Stacking-dependent shear modes in trilayer graphene [J]. Applied Physics Letters, 2015, 106(4): 041904.
[56] [56] Lee J-U, Kim K, Han S, et al. Raman signatures of polytypism in molybdenum disulfide [J]. ACS Nano, 2016, 10(2): 1948-1953.
[57] [57] Lu X, Utama M I B, Lin J, et al. Rapid and nondestructive identification of polytypism and stacking sequences in few‐layer molybdenum diselenide by Raman spectroscopy [J]. Advanced Materials, 2015, 27(30): 4502-4508.
[58] [58] Puretzky A A, Liang L, Li X, et al. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations [J]. ACS Nano, 2015, 9(6): 6333-6342.
[59] [59] Wu J-B, Hu Z-X, Zhang X, et al. Interface coupling in twisted multilayer graphene by resonant Raman spectroscopy of layer breathing modes [J]. ACS Nano, 2015, 9(7): 7440-7449.
[60] [60] Huang M, Yan H, Chen C, et al. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy [J]. Proceedings of the National Academy of Sciences, 2009, 106(18): 7304-73-8.
[61] [61] Wang Y, Cong C, Qiu C, et al. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain [J]. Small, 2013, 9(17): 2857-2861.
[62] [62] Yoon D, Son Y-W, Cheong H. Strain-dependent splitting of the double-resonance Raman scattering band in graphene [J]. Physical Review Letters, 2011, 106(15): 155502.
[63] [63] Mohiuddin T, Lombardo A, Nair R, et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation [J]. Physical Review B, 2009, 79(20): 205433.
[64] [64] Jegal S, Hao Y, Yoon D, et al. Crystallographic orientation of early domains in CVD graphene studied by Raman spectroscopy [J]. Chemical Physics Letters, 2013, 568: 146-150.
[65] [65] Sasaki K-i, Wakabayashi K, Enoki T. Polarization dependence of Raman spectra in strained graphene [J]. Physical Review B, 2010, 82(20): 205407.
[66] [66] Mohr M, Maultzsch J, Thomsen C. Splitting of the Raman 2D band of graphene subjected to strain [J]. Physical Review B, 2010, 82(20): 201409.
[67] [67] Doratotaj D, Simpson J R, Yan J-A. Probing the uniaxial strains in MoS2 using polarized Raman spectroscopy: A first-principles study [J]. Physical Review B, 2016, 93(7): 075401.
[68] [68] Ribeiro H B, Pimenta M A, De Matos C J, et al. Unusual angular dependence of the Raman response in black phosphorus [J]. ACS Nano, 2015, 9(4): 4270-4276.
[69] [69] Wu J, Mao N, Xie L, et al. Identifying the crystalline orientation of black phosphorus using angle‐resolved polarized raman spectroscopy [J]. Angewandte Chemie International Edition, 2015, 54(8): 2366-2369.
[70] [70] Wen W, Zhu Y, Liu X, et al. Anisotropic spectroscopy and electrical properties of 2D ReS2(1-x)Se2x alloys with distorted 1T structure [J]. Small, 2017, 13(12): 1603788.
[71] [71] Beams R, Canado L G, Krylyuk S, et al. Characterization of few-layer 1T′ MoTe2 by polarization-resolved second harmonic generation and Raman scattering [J]. ACS Nano, 2016, 10(10): 9626-9636.
[72] [72] Liu L, Wu J, Wu L, et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers [J]. Nature Materials, 2018, 17(12): 1108-1114.
[73] [73] Kim M, Han S, Kim J H, et al. Determination of the thickness and orientation of few-layer tungsten ditelluride using polarized Raman spectroscopy [J]. 2D Materials, 2016, 3(3): 034004.
[74] [74] Kim J, Lee J-U, Lee J, et al. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus [J]. Nanoscale, 2015, 7(44): 18708-18715.
[75] [75] Zhao H, Wu J, Zhong H, et al. Interlayer interactions in anisotropic atomically thin rhenium diselenide [J]. Nano Research, 2015, 8(11): 3651-3661.
[76] [76] Liu X-L, Zhang X, Lin M-L, et al. Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials [J]. Chinese Physics B, 2017, 26(6): 067802.
[77] [77] Mao N, Zhang S, Wu J, et al. Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy [J]. Nano Research, 2018, 11(6): 3154-3163.
[78] [78] Wang X, Jones A M, Seyler K L, et al. Highly anisotropic and robust excitons in monolayer black phosphorus [J]. Nature Nanotechnology, 2015, 10(6): 517-521.
[79] [79] Wolverson D, Crampin S, Kazemi A S, et al. Raman spectra of monolayer, few-layer, and bulk ReSe2: an anisotropic layered semiconductor [J]. ACS Nano, 2014, 8(11): 11154-11164.
[80] [80] Ling X, Huang S, Hasdeo E H, et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus [J]. Nano Letters, 2016, 16(4): 2260-2267.
[81] [81] Wang T, Liu J, Xu B, et al. Identifying the Crystalline Orientation of Black Phosphorus by Using Optothermal Raman Spectroscopy [J]. ChemPhysChem, 2017, 18(20): 2828-2834.
[82] [82] Mao N, Zhang S, Wu J, et al. Lattice vibration and raman scattering in anisotropic black phosphorus crystals [J]. Small Methods, 2018, 2(6): 1700409.
[83] [83] Yang W, Yuan Z-Y, Luo Y-Q, et al. Raman-active modes of 1T′-WTe2 under tensile strain: A first-principles prediction [J]. Physical Review B, 2019, 99(23): 235401.
[84] [84] Zhang S, Mao N, Wu J, et al. In‐Plane Uniaxial Strain in Black Phosphorus Enables the Identification of Crystalline Orientation [J]. Small, 2017, 13(30): 1700466.
[85] [85] Luo W, Oyedele A D, Gu Y, et al. Anisotropic Phonon Response of Few‐Layer PdSe2 under Uniaxial Strain [J]. Advanced Functional Materials, 2020: 2003215.
[86] [86] Zhu W, Liang L, Roberts R H, et al. Anisotropic electron-phonon interactions in angle-resolved Raman study of strained black phosphorus [J]. ACS Nano, 2018, 12(12): 12512-12522.
[87] [87] Mao N, Tang J, Xie L, et al. Optical anisotropy of black phosphorus in the visible regime [J]. Journal of the American Chemical Society, 2016, 138(1): 300-3005.
[88] [88] Luo X, Lu X, Koon G K W, et al. Large Frequency Change with Thickness in Interlayer Breathing Mode Significant Interlayer Interactions in Few Layer Black Phosphorus [J]. Nano Letters, 2015, 15(6): 3931-3938.
[89] [89] He R, Yan J-A, Yin Z, et al. Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency Raman spectroscopy [J]. Nano Letters, 2016, 16(2): 1404-1409.
[90] [90] Qiao X-F, Wu J-B, Zhou L, et al. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2 [J]. Nanoscale, 2016, 8(15): 8324-8332.
[91] [91] Jeon I, Yoon B, He M, et al. Hyperstage graphite: electrochemical synthesis and spontaneous reactive exfoliation [J]. Advanced Materials, 2018, 30(3): 1704538.
[92] [92] Son B, Kim H, Jeong H, et al. Electron beam induced removal of PMMA layer used for graphene transfer [J]. Scientific Reports, 2017, 7(1): 1-7.
[93] [93] Wang H, Zhou Y, Wu D, et al. Synthesis of boron‐doped graphene monolayers using the sole solid feedstock by chemical vapor deposition [J]. Small, 2013, 9(8): 1316-1320.
[94] [94] Liao L, Song Z, Zhou Y, et al. Photoinduced methylation of graphene [J]. Small, 2013, 9(8): 1348-1352.
[95] [95] Pimenta M, Dresselhaus G, Dresselhaus M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy [J]. Physical Chemistry Chemical Physics, 2007, 9(11): 1276-1290.
[96] [96] Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene [J]. Nature Nanotechnology, 2013, 8(4): 235-246.
[97] [97] Venezuela P, Lazzeri M, Mauri F. Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands [J]. Physical Review B, 2011, 84(3): 035433.
[98] [98] Eckmann A, Felten A, Verzhbitskiy I, et al. Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects [J]. Physical Review B, 2013, 88(3): 035426.
[99] [99] Jiang J, Pachter R, Mehmood F, et al. A Raman spectroscopy signature for characterizing defective single-layer graphene: defect-induced I(D)/I(D′) intensity ratio by theoretical analysis [J]. Carbon, 2015, 90: 53-62.
[100] [100] Eckmann A, Felten A, Mishchenko A, et al. Probing the nature of defects in graphene by Raman spectroscopy [J]. Nano Letters, 2012, 12(8): 3925-3930.
[101] [101] Merlen A, Buijnsters J G, Pardanaud C. A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids: From graphene to amorphous carbons [J]. Coatings, 2017, 7(10): 153.
[102] [102] Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Physical Review B, 2000, 61(20): 14095.
[103] [103] Canado L G, Jorio A, Ferreira E M, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies [J]. Nano Letters, 2011, 11(8): 3190-3196.
[104] [104] Lucchese M M, Stavale F, Ferreira E M, et al. Quantifying ion-induced defects and Raman relaxation length in graphene [J]. Carbon, 2010, 48(5): 1592-1597.
[105] [105] Bendiab N, Renard J, Schwarz C, et al. Unravelling external perturbation effects on the optical phonon response of graphene [J]. Journal of Raman Spectroscopy, 2018, 49(1): 130-145.
[106] [106] Mignuzzi S, Pollard A J, Bonini N, et al. Effect of disorder on Raman scattering of single-layer MoS2 [J]. Physical Review B, 2015, 91(19): 195411.
[108] [108] Cancado L, Pimenta M, Neves B, et al. Influence of the atomic structure on the Raman spectra of graphite edges [J]. Physical Review Letters, 2004, 93(24): 247401.
[109] [109] Gupta A K, Russin T J, Gutiérrez H R, et al. Probing graphene edges via Raman scattering [J]. ACS Nano, 2009, 3(1): 45-52.
[110] [110] Casiraghi C, Hartschuh A, Qian H, et al. Raman spectroscopy of graphene edges [J]. Nano Letters, 2009, 9(4): 1433-1441.
[111] [111] Cong C, Yu T, Wang H. Raman study on the G mode of graphene for determination of edge orientation [J]. ACS Nano, 2010, 4(6): 3175-3180.
[112] [112] Sasaki K-i, Saito R, Wakabayashi K, et al. Identifying the orientation of edge of graphene using G band Raman spectra [J]. Journal of the Physical Society of Japan, 2010, 79(4): 044603.
[113] [113] Mahjouri-Samani M, Liang L, Oyedele A, et al. Tailoring vacancies far beyond intrinsic levels changes the carrier type and optical response in monolayer MoSe2-x crystals [J]. Nano Letters, 2016, 16(8): 5213-5220.
[114] [114] He Z, Zhao R, Chen X, et al. Defect engineering in single-layer MoS2 using heavy ion irradiation [J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42524-42533.
[115] [115] Thiruraman J P, Fujisawa K, Danda G, et al. Angstrom-size defect creation and ionic transport through pores in single-layer MoS2 [J]. Nano Letters, 2018, 18(3): 1651-1659.
[116] [116] Bera A, Muthu D, Sood A. Enhanced Raman and photoluminescence response in monolayer MoS2 due to laser healing of defects [J]. Journal of Raman Spectroscopy, 2018, 49(1): 100-105.
[117] [117] Beams R. Tip‐enhanced Raman scattering of graphene [J]. Journal of Raman Spectroscopy, 2018, 49(1): 157-167.
[118] [118] Lee C, Jeong B G, Yun S J, et al. Unveiling defect-related Raman mode of monolayer WS2 via tip-enhanced resonance Raman scattering [J]. ACS Nano, 2018, 12(10): 9982-9990.
[119] [119] Kato R, Umakoshi T, Sam R T, et al. Probing nanoscale defects and wrinkles in MoS2 by tip-enhanced Raman spectroscopic imaging [J]. Applied Physics Letters, 2019, 114(7): 073105.
[120] [120] Huang T-X, Cong X, Wu S-S, et al. Probing the edge-related properties of atomically thin MoS2 at nanoscale [J]. Nature Communications, 2019, 10(1): 1-8.
[121] [121] Mignuzzi S, Kumar N, Brennan B, et al. Probing individual point defects in graphene via near-field Raman scattering [J]. Nanoscale, 2015, 7(46): 19413-19418.
[122] [122] Cho S, Kim S, Kim J H, et al. Phase patterning for ohmic homojunction contact in MoTe2 [J]. Science, 2015, 349(6248): 625-628.
[123] [123] Li Y, Duerloo K-A N, Wauson K, et al. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating [J]. Nature Communications, 2016, 7(1): 1-8.
[124] [124] Keum D H, Cho S, Kim J H, et al. Bandgap opening in few-layered monoclinic MoTe2 [J]. Nature Physics, 2015, 11(6): 482-486.
[125] [125] Zhu J, Wang Z, Yu H, et al. Argon plasma induced phase transition in monolayer MoS2 [J]. Journal of the American Chemical Society, 2017, 139(30): 10216-10219.
[126] [126] Song S, Keum D H, Cho S, et al. Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain [J]. Nano Letters, 2016, 16(1): 188-193.
[127] [127] Friedman A L, Hanbicki A T, Perkins F K, et al. Evidence for chemical vapor induced 2H to 1T phase transition in MoX2 (X= Se, S) transition metal dichalcogenide films [J]. Scientific Reports, 2017, 7(1): 1-9.
[128] [128] Kan M, Nam H G, Lee Y H, et al. Phase stability and Raman vibration of the molybdenum ditelluride (MoTe2) monolayer [J]. Physical Chemistry Chemical Physics, 2015, 17(22): 14866-16871.
[129] [129] Cong X, Liu X-L, Lin M-L, et al. Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials [J]. npj 2D Materials and Applications, 2020, 4(1): 1-12.
[130] [130] Hossain M, Wu J, Wen W, et al. Chemical vapor deposition of 2D vanadium disulfide and diselenide and Raman characterization of the phase transitions [J]. Advanced Materials Interfaces, 2018, 5(16): 1800528.
[131] [131] Zhou L, Xu K, Zubair A, et al. Large-area synthesis of high-quality uniform few-layer MoTe2 [J]. Journal of the American Chemical Society, 2015, 137(37): 11892-11895.
Get Citation
Copy Citation Text
DONG Wenlong, LIU Luqi. Recent Advances of Raman Spectroscopy in Structural Characterization of Two-dimensional Materials[J]. The Journal of Light Scattering, 2021, 33(1): 1
Category:
Received: Oct. 10, 2020
Accepted: --
Published Online: Sep. 12, 2021
The Author Email: Wenlong DONG (dongwl2020@nanoctr.cn)