Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1637002(2025)

Lightweight Image Super-Resolution Reconstruction Incorporating Dual-Stream Feature Enhancement

Zhilin Gao, Jintao Wang, Qixiang Meng, and Fanliang Bu*
Author Affiliations
  • School of Information Network Security, People's Public Security University of China, Beijing 100038, China
  • show less
    Figures & Tables(13)
    Overall network structure of DSLSR
    DSEM structure diagram
    Network structure. (a) LFDB; (b) LSRB; (c) Shift8 module
    Dysample structure diagram
    Reconstruction effect comparison of Manga109_ARMS at ×4 scale
    Reconstruction effect comparison of Urban100_img_092 at ×4 scale
    Examples of reconstruction results based on self-created dataset
    Comparison of reconstruction effects of images at ×4 scale in Urban100 dataset with/without Dysample. (a) With Dysample; (b) without Dysample
    • Table 1. Peformances of different algorithms on each dataset

      View table

      Table 1. Peformances of different algorithms on each dataset

      MethodScaleSet5Set14BSD100Urban100Manga109
      PSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIM
      Bicubic×233.660.929930.240.868829.560.843126.880.840330.800.9339
      SRCNN36.660.954232.450.906731.360.887929.500.894635.600.9663
      VDSR37.530.958733.030.912431.900.896030.760.914037.220.9750
      DRCN37.630.958833.040.911831.850.894230.750.913337.550.9732
      CARN37.760.959033.520.916632.090.897831.920.925638.360.9765
      IMDN38.000.960533.630.917732.190.899632.170.928338.880.9774
      EDSR37.990.960433.570.917532.160.899431.980.927238.540.9769
      SMSR38.000.960133.640.917932.170.899032.190.928438.760.9771
      RFDN38.050.960633.680.918432.160.899432.120.927838.880.9773
      SAFMN38.000.960533.540.917732.160.899531.840.925638.710.9771
      ESRT38.030.960033.750.918432.250.900132.580.931839.120.9774
      HNCT38.080.960833.650.918232.220.900132.220.929438.870.9774
      LBNet38.050.960733.650.917732.160.899432.300.929138.880.9775
      NGswin38.100.961033.790.919932.270.900832.530.932438.970.9777
      SwinIR-Light38.140.961133.860.920632.310.901232.760.934039.120.9783
      DSLSR38.130.961033.940.921132.310.901632.760.934039.130.9779
      Bicubic×330.390.868227.550.774227.210.738524.460.734926.960.8556
      SRCNN32.750.909029.280.820928.410.786326.240.798932.010.9340
      VDSR33.660.921329.770.831428.820.797627.140.827932.010.9340
      DRCN33.820.922629.760.831128.800.796327.150.827632.240.9343
      CARN34.290.925530.290.840729.060.803428.060.849333.500.9440
      IMDN34.360.927030.320.841729.090.804628.170.851933.610.9445
      EDSR34.370.927030.280.841729.090.805228.150.852733.450.9439
      SMSR34.400.927030.330.841229.100.805028.250.853633.680.9445
      RFDN34.410.927330.340.842029.090.805028.210.852533.670.9449
      SAFMN34.340.926730.330.841829.080.804827.950.847433.520.9437
      ESRT34.420.926830.430.843329.150.806328.460.857433.950.9455
      HNCT34.470.927530.440.843929.150.806728.280.855733.810.9459
      LBNet34.470.927730.380.841729.130.806128.420.855933.820.9406
      NGswin34.520.928230.530.845629.190.807828.520.860333.890.9470
      SwinIR-Light34.620.928930.540.846329.200.808228.660.862433.980.9478
      DSLSR34.600.928930.590.846629.240.808528.730.862934.260.9486
      Bicubic×428.420.810426.000.702725.960.667523.140.657724.890.7866
      SRCNN30.480.862627.500.751326.900.710124.520.722127.580.8555
      VDSR31.350.883828.010.767427.290.725125.180.752428.830.8870
      DRCN31.530.885428.020.767027.230.723325.140.751028.980.8816
      CARN32.130.893728.600.780627.580.734926.070.783730.470.9084
      IMDN32.210.894828.580.781127.560.735326.040.783830.450.9075
      EDSR32.090.893828.580.781327.570.735726.040.784930.350.9067
      SMSR32.120.893228.550.780827.550.735126.110.786830.540.9085
      RFDN32.240.895228.610.781927.570.736026.110.785830.580.9089
      SAFMN32.180.894828.600.781327.580.735925.970.780930.430.9063
      ESRT32.190.894728.690.783327.690.737926.390.796230.750.9100
      HNCT32.310.895728.710.783427.630.738126.200.789630.700.9112
      LBNet32.290.896028.680.783227.620.738226.270.790630.760.9111
      NGswin32.330.896328.780.785927.660.739626.450.796330.800.9128
      SwinIR-Light32.440.897628.770.785827.690.740626.470.798030.920.9151
      DSLSR32.420.897628.810.786127.710.740626.630.801031.140.9162
    • Table 2. Evaluation metrics for various lightweight models at ×4 scale

      View table

      Table 2. Evaluation metrics for various lightweight models at ×4 scale

      MethodParameter quantity /103FLOPs /109Set14BSD100Urban100Manga109
      PSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIM
      DRCN17749788.028.020.767027.230.723325.140.751028.980.8816
      VDSR666612.628.010.767427.290.725125.180.752428.830.8870
      CARN159290.928.600.780627.580.734926.070.783730.470.9084
      SMSR100641.628.550.780827.550.735126.110.786830.540.9085
      EDSR1518114.028.580.781327.570.735726.040.784930.350.9067
      NGswin101936.428.780.785927.660.739626.450.796330.800.9128
      SwinIR-Light93049.628.770.785827.690.740626.470.798030.920.9151
      DSLSR85839.628.810.786127.710.740626.630.801031.140.9162
    • Table 3. Impact of different components on model performance

      View table

      Table 3. Impact of different components on model performance

      MethodParameter quantity /103Set5Set14BSD100Urban100Manga109
      PSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIM
      Model1120432.300.896528.650.782827.610.737026.150.788730.640.9107
      Model225832.070.893428.550.779827.520.733525.900.777830.250.9051
      Model385432.420.898028.780.785827.700.740626.510.797931.100.9160
      Model485832.420.897628.810.786127.710.740626.630.801031.140.9162
    • Table 4. Impact of different components in LFDB on model performance

      View table

      Table 4. Impact of different components in LFDB on model performance

      3×3Conv1×1ConvShift8DSEMParameter quantity /103PSNR /dBSSIM
      ×××149.028.610.7819
      ×××29.127.520.7522
      ××29.128.550.7798
      ×104.228.780.7858
    • Table 5. Impact of DSFM on DSEM performance

      View table

      Table 5. Impact of DSFM on DSEM performance

      MethodSet5Set14BSD100Urban100Manga109
      PSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIM
      DSLSR32.420.897628.810.786127.710.740626.630.801031.140.9162
      DSLSR without DSFM32.440.897428.740.785127.650.739826.360.794030.780.9130
    Tools

    Get Citation

    Copy Citation Text

    Zhilin Gao, Jintao Wang, Qixiang Meng, Fanliang Bu. Lightweight Image Super-Resolution Reconstruction Incorporating Dual-Stream Feature Enhancement[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1637002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Jan. 3, 2025

    Accepted: Mar. 11, 2025

    Published Online: Aug. 6, 2025

    The Author Email: Fanliang Bu (20051257@ppsuc.edu.cn)

    DOI:10.3788/LOP250444

    CSTR:32186.14.LOP250444

    Topics