Acta Optica Sinica, Volume. 44, Issue 15, 1513001(2024)

High-Performance Electro-Optical Modulator Based on Thin-Film Lithium Niobate (Invited)

Gengxin Chen1 and Liu Liu1,2、*
Author Affiliations
  • 1College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • 2Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, Zhejiang, China
  • show less
    Figures & Tables(21)
    Two types of lithium niobate material. (a) Lithium niobate crystal[32]; (b) single-crystal thin-film lithium niobate wafer[40]
    Fabrication process of single-crystal thin-film lithium niobate wafer. (a) Ion implantation; (b) substrate preparation; (c) wafer bonding; (d) annealing and splitting; (e) annealing and polishing
    Different types of lithium niobate modulators. (a) Traditional diffused lithium niobate modulator; (b) rib-loaded lithium niobate modulator; (c) heterogenous-bonded lithium niobate modulator; (d) monolithic thin-film lithium niobate modulator
    Overall structure diagram of the development of thin-film lithium niobate modulator
    Non-resonator types of thin-film lithium niobate modulators with different structures. These types of modulators include Mach-Zehnder interferometer based modulators using regular traveling-wave electrode (TWE), Mach-Zehnder interferometer based modulators using capacitively loaded traveling-wave electrode (CLTWE), and single/dual-polarization IQ modulators
    MZI-based modulators using regular traveling-wave electrode and capacitively loaded traveling-wave electrode. (a) First high-performance thin-film lithium niobate electro-optic modulator using traveling-wave electrode[15]; (b) thin-film lithium niobate electro-optic modulator using capacitively loaded traveling-wave electrode based on quartz substrate[46]; (c) thin-film lithium niobate electro-optic modulator using capacitively loaded traveling-wave electrode based on silicon substrate[47]
    Folded MZI-based modulators. (a) Folded thin-film lithium niobate electro-optic modulator using traveling-wave electrode based on poled MZI structure[48]; (b) folded heterogenous thin-film lithium niobate electro-optic modulator using traveling-wave electrode and waveguide crossing structure[49]; (c) folded thin-film lithium niobate electro-optic modulator using capacitively loaded traveling-wave electrode and waveguide crossing structure[50]; (d) folded thin-film lithium niobate electro-optic modulator using capacitively loaded traveling-wave electrode and microelectrode crossing structure[51]
    Single-polarization and dual-polarization IQ modulators. (a) Single-polarization thin-film lithium niobate IQ modulator using regular traveling-wave electrode[52]; (b) dual-polarization thin-film lithium niobate IQ modulator using regular traveling-wave electrode[53]; (c) dual-polarization thin-film lithium niobate IQ modulator using capacitively loaded traveling-wave electrode base on quartz substrate[54]; (d) dual-polarization heterogenous thin-film lithium niobate IQ modulator using capacitively loaded traveling-wave electrode base on silicon substrate[55]
    Resonator types of thin-film lithium niobate modulators. These types of modulators include PC modulator, ring modulator, 1×1 FP modulator, 2×2 FP modulator, SL modulator, and WBG modulator
    Photonic-crystal modulators and micro-ring modulators. (a) Photonic-crystal thin-film lithium niobate electro-optic modulator[60]; (b) heterogenous micro-ring electro-optic modulator[61]; homogeneous electro-optic modulator with (c) micro-ring resonator[62] and (d) racetrack resonator[63]
    Bragg grating resonator based modulators with different structures. (a) Single-mode 1×1 FP thin-film lithium niobate modulator[64]; (b) multi-mode 2×2 FP thin-film lithium niobate modulator[65]; (c) waveguide Bragg grating modulator[66]; (d) slow-light thin-film lithium niobate modulator using coupled Bragg grating resonator[67]
    Different types of modulators on thin-film lithium niobate. (a) Michelson interferometer modulator[68]; (b) high-efficiency thin-film lithium niobate modulator using high-permittivity cladding[71]; (c) Z-cut thin-film lithium niobate modulator[72]; (d) ring-assisted Mach-Zehnder interferometer modulator on thin-film lithium niobate[73]; (e) plasmonic lithium niobate Mach-Zehnder modulator[74]; (f) thin-film lithium niobate modulator in topological interface states of a one-dimensional lattice[75]
    Heterogeneous-bonded modulators on thin-film lithium niobate. (a) Hybrid silicon and lithium niobate modulator using BCB-bonded process[76]; (b) hybrid silicon nitride and lithium niobate modulator using BCB-bonded process[77]; (c) hybrid silicon and lithium niobate modulator using direct-bonded process[78]; (d) hybrid silicon nitride and lithium niobate modulator using direct-bonded process[79]
    Rib-loaded modulators and micro-transfer printing modulators on heterogeneous thin-film lithium niobate. (a) Heterogeneous silicon-on-lithium niobate modulator[80]; (b) heterogeneous silicon nitride-on-lithium niobate modulator[81]; (c) heterogeneous silicon nitride-on-lithium niobate modulator using micro-transfer printing[90]
    Thin-film lithium niobate modulators under different working wavelengths. (a) Thin-film lithium niobate modulator at visible-light waveband[92-94]; (b) thin-film lithium niobate modulator at near-infrared waveband[95]; (c) thin-film lithium niobate modulator at 1064 nm waveband[96]; (d) thin-film lithium niobate modulator at 2 μm waveband[97]; (e) thin-film lithium niobate modulator at 3.39 μm waveband[98]
    Multi-channel modulators on thin-film lithium niobate. (a) Four-channel transmitter using high-power distributed feedback laser on thin-film lithium niobate[99]; (b) four-channel transmitter for QSFP-DD package on thin-film lithium niobate[100]; (c) O-band CWDM transmitter on thin-film lithium niobate using titled multimode interferometer structure[101]; (d) C-band CWDM transmitter on thin-film lithium niobate using multimode Bragg grating structure[103]
    Applications of thin-film lithium niobate modulators. (a) Electro-optic frequency comb using non-resonator-based structure[112] and resonator-based structure[115]; (b) tunable[117] and ultra-fast mode-locked[119] laser on thin-film lithium niobate; (c) electro-optic isolator on thin-film lithium niobate[120]; (d) microwave photoelectron processing engine on thin-film lithium niobate[121]
    • Table 1. Performance comparison of non-resonator types of modulators on thin-film lithium niobate

      View table

      Table 1. Performance comparison of non-resonator types of modulators on thin-film lithium niobate

      Ref.StructureVπL /(V·cm)Vπ /(V·dB)f3 dB /GHzVpp /VLdB /dBvDR /(Gbit·s-1F1,TWE /(GHz·V-2

      F2,TWE /

      (GHz·W-1

      15TWE-MZI2.80.56452.50.4210(PAM8)22.96327.6
      46CLTWE-MZI2.63.9501.529.59
      47CLTWE-MZI2.20.33>6720.2112(PAM4)13.84783.9
      49Folded TWE-MZI2.60.52502.9128(PAM4)10.62
      50Folded CLTWE-MZI2.20.33450.61200(PAM4)100.254931.25
      52Single IQ2.50.5481.8320(16QAM)13.02
      53Dual IQ2.60.783061600(PS256QAM)6.37
      54Dual IQ2.353.61100.633.21960(PS400QAM)1106540.58
      55Dual IQ2.250.34701.8768(16QAM)7.78
    • Table 2. Performance comparison of resonator types of modulators on thin-film lithium niobate

      View table

      Table 2. Performance comparison of resonator types of modulators on thin-film lithium niobate

      Ref.StructureηTE /(pm·V-1)QLf3 dB /GHzVpp /VLdB /dBvDR /(Gbit·s-1)F2,TWE /(GHz·W-1)F2,LE /(GHz·fJ-1·bit-1)
      [60]PC161.4✕10417.522.211 (OOK)0.33
      [61]Ring3.31.4✕104554.39 (OOK)0.034
      [63]Ring78✕103305.661.540 (OOK)0.043
      [64]1×1 FP15.71.2✕104243.41.6556 (OOK)
      [65]2×2 FP72.35✕10311021140 (PAM4)14.27
      [66]WBG14.62.35✕105601.815100 (OOK)
      [67]SL15.675063.680 (OOK)30.14
    • Table 3. Performance comparison of different types of modulators on thin-film lithium niobate

      View table

      Table 3. Performance comparison of different types of modulators on thin-film lithium niobate

      Ref.StructureVπL /(V·cm)Vπ /(V·dB)f3 dB /GHzVpp /VLdB /dBvDR /(Gbit·s-1)F1,TWE /(GHz·V-2)F2,TWE /(GHz·W-1)F2,LE /(GHz·fJ-1·bit-1)
      [68]MIM1.42.81210435 (OOK)0.062.38
      [73]Ring+MZI0.350.05>670.750.15240 (PAM4)21.885639.91
      [72]Z-cut7.49.622.05100.15
      [74]Plasmon. mod.0.2329901019.5
      [71]High-eff. mod.1.411.76670.564 (OOK)5.39
      [75]Top. mod.10421.3100 (PAM4)4.92
    • Table 4. Performance comparison of heterogeneous thin-film lithium niobate modulators

      View table

      Table 4. Performance comparison of heterogeneous thin-film lithium niobate modulators

      Ref.StructureVπL /(V·cm)Vπ /(V·dB)f3 dB /GHzVpp /VLdB /dBvDR /(Gbit·s-1)F1,TWE /(GHz·V-2)F2,TWE /(GHz·W-1)
      [76]BCB-bonded Si-LN2.20.446742.5112 (PAM4)1.25117.67
      [77]BCB-bonded SiN-LN3.00.843721128 (PAM4)2.02367.23
      [78]Direct-bonded Si-LN3.12.481101.82.86
      [79]Direct-bonded SiN-LN2.80.9511010.63.51
      [80]Rib-loaded Si-LN1.92.85601.82.7200 (PAM4)6.01481.48
      [81]Rib-loaded SiN-LN2.243080 (OOK)3.64
      [90]μTP Si-LN340.5504.43.370 (OOK)0.2260.43
    Tools

    Get Citation

    Copy Citation Text

    Gengxin Chen, Liu Liu. High-Performance Electro-Optical Modulator Based on Thin-Film Lithium Niobate (Invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: Apr. 30, 2024

    Accepted: Jun. 20, 2024

    Published Online: Aug. 5, 2024

    The Author Email: Liu Liu (liuliuopt@zju.edu.cn)

    DOI:10.3788/AOS240954

    Topics