Acta Optica Sinica, Volume. 44, Issue 15, 1513001(2024)
High-Performance Electro-Optical Modulator Based on Thin-Film Lithium Niobate (Invited)
Fig. 2. Fabrication process of single-crystal thin-film lithium niobate wafer. (a) Ion implantation; (b) substrate preparation; (c) wafer bonding; (d) annealing and splitting; (e) annealing and polishing
Fig. 3. Different types of lithium niobate modulators. (a) Traditional diffused lithium niobate modulator; (b) rib-loaded lithium niobate modulator; (c) heterogenous-bonded lithium niobate modulator; (d) monolithic thin-film lithium niobate modulator
Fig. 4. Overall structure diagram of the development of thin-film lithium niobate modulator
Fig. 5. Non-resonator types of thin-film lithium niobate modulators with different structures. These types of modulators include Mach-Zehnder interferometer based modulators using regular traveling-wave electrode (TWE), Mach-Zehnder interferometer based modulators using capacitively loaded traveling-wave electrode (CLTWE), and single/dual-polarization IQ modulators
Fig. 6. MZI-based modulators using regular traveling-wave electrode and capacitively loaded traveling-wave electrode. (a) First high-performance thin-film lithium niobate electro-optic modulator using traveling-wave electrode[15]; (b) thin-film lithium niobate electro-optic modulator using capacitively loaded traveling-wave electrode based on quartz substrate[46]; (c) thin-film lithium niobate electro-optic modulator using capacitively loaded traveling-wave electrode based on silicon substrate[47]
Fig. 7. Folded MZI-based modulators. (a) Folded thin-film lithium niobate electro-optic modulator using traveling-wave electrode based on poled MZI structure[48]; (b) folded heterogenous thin-film lithium niobate electro-optic modulator using traveling-wave electrode and waveguide crossing structure[49]; (c) folded thin-film lithium niobate electro-optic modulator using capacitively loaded traveling-wave electrode and waveguide crossing structure[50]; (d) folded thin-film lithium niobate electro-optic modulator using capacitively loaded traveling-wave electrode and microelectrode crossing structure[51]
Fig. 8. Single-polarization and dual-polarization IQ modulators. (a) Single-polarization thin-film lithium niobate IQ modulator using regular traveling-wave electrode[52]; (b) dual-polarization thin-film lithium niobate IQ modulator using regular traveling-wave electrode[53]; (c) dual-polarization thin-film lithium niobate IQ modulator using capacitively loaded traveling-wave electrode base on quartz substrate[54]; (d) dual-polarization heterogenous thin-film lithium niobate IQ modulator using capacitively loaded traveling-wave electrode base on silicon substrate[55]
Fig. 9. Resonator types of thin-film lithium niobate modulators. These types of modulators include PC modulator, ring modulator, 1×1 FP modulator, 2×2 FP modulator, SL modulator, and WBG modulator
Fig. 11. Bragg grating resonator based modulators with different structures. (a) Single-mode 1×1 FP thin-film lithium niobate modulator[64]; (b) multi-mode 2×2 FP thin-film lithium niobate modulator[65]; (c) waveguide Bragg grating modulator[66]; (d) slow-light thin-film lithium niobate modulator using coupled Bragg grating resonator[67]
Fig. 12. Different types of modulators on thin-film lithium niobate. (a) Michelson interferometer modulator[68]; (b) high-efficiency thin-film lithium niobate modulator using high-permittivity cladding[71]; (c) Z-cut thin-film lithium niobate modulator[72]; (d) ring-assisted Mach-Zehnder interferometer modulator on thin-film lithium niobate[73]; (e) plasmonic lithium niobate Mach-Zehnder modulator[74]; (f) thin-film lithium niobate modulator in topological interface states of a one-dimensional lattice[75]
Fig. 13. Heterogeneous-bonded modulators on thin-film lithium niobate. (a) Hybrid silicon and lithium niobate modulator using BCB-bonded process[76]; (b) hybrid silicon nitride and lithium niobate modulator using BCB-bonded process[77]; (c) hybrid silicon and lithium niobate modulator using direct-bonded process[78]; (d) hybrid silicon nitride and lithium niobate modulator using direct-bonded process[79]
Fig. 14. Rib-loaded modulators and micro-transfer printing modulators on heterogeneous thin-film lithium niobate. (a) Heterogeneous silicon-on-lithium niobate modulator[80]; (b) heterogeneous silicon nitride-on-lithium niobate modulator[81]; (c) heterogeneous silicon nitride-on-lithium niobate modulator using micro-transfer printing[90]
Fig. 15. Thin-film lithium niobate modulators under different working wavelengths. (a) Thin-film lithium niobate modulator at visible-light waveband[92-94]; (b) thin-film lithium niobate modulator at near-infrared waveband[95]; (c) thin-film lithium niobate modulator at 1064 nm waveband[96]; (d) thin-film lithium niobate modulator at 2 μm waveband[97]; (e) thin-film lithium niobate modulator at 3.39 μm waveband[98]
Fig. 16. Multi-channel modulators on thin-film lithium niobate. (a) Four-channel transmitter using high-power distributed feedback laser on thin-film lithium niobate[99]; (b) four-channel transmitter for QSFP-DD package on thin-film lithium niobate[100]; (c) O-band CWDM transmitter on thin-film lithium niobate using titled multimode interferometer structure[101]; (d) C-band CWDM transmitter on thin-film lithium niobate using multimode Bragg grating structure[103]
Fig. 17. Applications of thin-film lithium niobate modulators. (a) Electro-optic frequency comb using non-resonator-based structure[112] and resonator-based structure[115]; (b) tunable[117] and ultra-fast mode-locked[119] laser on thin-film lithium niobate; (c) electro-optic isolator on thin-film lithium niobate[120]; (d) microwave photoelectron processing engine on thin-film lithium niobate[121]
|
|
|
|
Get Citation
Copy Citation Text
Gengxin Chen, Liu Liu. High-Performance Electro-Optical Modulator Based on Thin-Film Lithium Niobate (Invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513001
Category: Integrated Optics
Received: Apr. 30, 2024
Accepted: Jun. 20, 2024
Published Online: Aug. 5, 2024
The Author Email: Liu Liu (liuliuopt@zju.edu.cn)