Acta Laser Biology Sinica, Volume. 29, Issue 3, 208(2020)

Analysis of Differential Genes and Potential Pathways in Liver Damaged Microarray of CLP Sepsis Model

WANG Yongxiang1, ZHANG Zijian1, LIU Rushi2, XIONG Li1, LIU Kai1, HUANG Yunpeng1, YANG Yang1, CHEN Dan3, and WEN Yu1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(30)

    [1] [1] MAYR F B, YENDE S, ANGUS D C. Epidemiology of severe sepsis[J]. Virulence, 2014, 5(1): 4-11.

    [2] [2] KOTECHA A, VALLABHAJOSYULA S, COVILLE H H, et al. Cardiorenal syndrome in sepsis:a narrative review[J]. Journal of Critical Care, 2017, 43: 122-127.

    [3] [3] WEIS S, CARLOS A R, MOITA M R, et al. Metabolic adaptation establishes disease tolerance to sepsis[J]. Cell, 2017, 169(7): 1263-1275.

    [4] [4] CHEN L, LU Y, ZHAO L, et al. Curcumin attenuates sepsis-induced acute organ dysfunction by preventing inflammation and enhancing the suppressive function of tregs[J]. International Immunopharmacology, 2018, 61: 1-7.

    [5] [5] CONWAY-MORRIS A, WILSON J, SHANKAR-HARI M. Immune activation in sepsis[J]. Critical Care Clinics, 2017, 34(1): 29-42.

    [6] [6] MADOIWA S. Recent advances in disseminated intravascular coagulation:endothelial cells and fibrinolysis in sepsis-induced DIC[J]. Journal of Intensive Care, 2015, 3(1): 8.

    [7] [7] YIN Chengfen, YAO Yongming. Research progress on animal models of sepsis [J]. Chinese Journal of Experimental Surgery, 2013, 30 (5): 1092-1093.

    [8] [8] BANTA S, VEMULA M, YOKOYAMA T, et al. Contribution of gene expression to metabolic fluxes in hypermetabolic livers induced through burn injury and polymicrobial sepsis in rats[J]. Journal of Burn Care & Research, 2006, 27: S163.

    [9] [9] COBB J P, LARAMIE J M, STORMO G D, et al. Sepsis gene expression profiling:murine splenic compared with hepatic responses determined by using complementary DNA microarrays[J]. Critical Care Medicine, 2002, 30(12): 2711-2721.

    [10] [10] BORKHAM-KAMPHORST E, EDDY V D L, ZIMMERMANN H W, et al. Protective effects of lipocalin-2 (LCN2) in acute liver injury suggest a novel function in liver homeostasis[J]. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2013, 1832(5): 660-673.

    [11] [11] ASIMAKOPOULOU A, WEISKIRCHEN S, WEISKIRCHEN R. Lipocalin 2 (LCN2) expression in hepatic malfunction and therapy[J]. Frontiers in Physiology, 2016, 27(7): 430.

    [12] [12] BIGORGNE A E, JOHN B, EBRAHIMKHANI M R, et al. TLR4-dependent secretion by hepatic stellate cells of the neutrophil-chemoattractant CXCL1 mediates liver response to gut microbiota[J]. PLoS One, 2016, 11(3): e0151063.

    [13] [13] SUN Y, LIU W Z, LIU T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis[J]. Journal of Receptor and Signal Transduction Research, 2015, 35(6): 1-5.

    [14] [14] CUI X, QIAN D W, JIANG S, et al. Scutellariae radix and coptidis rhizoma improve glucose and lipid metabolism in T2DM rats via regulation of the metabolic profiling and MAPK/PI3K/Akt signaling pathway[J]. International Journal of Molecular Sciences, 2018, 19(11): 3634.

    [15] [15] HE Y, SHE H, ZHANG T, et al. p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1[J]. The Journal of Cell Biology, 2017, 217(1): 315-328.

    [16] [16] ZHANG H, LI H, SHAIKH A, et al. Inhibition of microRNA-23b attenuates immunosuppression during late sepsis through NIK, TRAF1, and XIAP[J]. Journal of Infectious Diseases, 2018, 218(2): 300-311.

    [17] [17] FENG F, QI Y, DONG C, et al. PVT1 regulates inflammation and cardiac function via the MAPK/NF-κB pathway in a sepsis model[J]. Experimental and Therapeutic Medicine, 2018, 16(6): 4471-4478.

    [18] [18] ZHENG G, PAN M, JIN W, et al. MicroRNA-135a is up-regulated and aggravates myocardial depression in sepsis via regulating p38 MAPK/NF-κB pathway[J]. International Immunopharmacology, 2017, 45: 6-12.

    [19] [19] CHEN H, WANG X, YAN X, et al. LncRNA MALAT1 regulates sepsis-induced cardiac inflammation and dysfunction via interaction with miR-125b and p38 MAPK/NFκB[J]. International Immunopharmacology, 2018, 55: 69-76.

    [20] [20] CAI X, CHEN Y, XIE X, et al. Astaxanthin prevents against lipopolysaccharide-induced acute lung injury and sepsis via inhibiting activation of MAPK/NF-κB[J]. American Journal of Translational Research, 2019, 11(3): 1884-1892.

    [21] [21] LU F, INOUE K, KATO J, et al. Functions and regulation of lipocalin-2 in gut-origin sepsis:a narrative review[J]. Crit Care, 2019, 23(1): 269.

    [22] [22] WANG B, CHEN G, LI J, et al. Neutrophil gelatinase-associated lipocalin predicts myocardial dysfunction and mortality in severe sepsis and septic shock[J]. International Journal of Cardiology, 2017, 227: 589-594.

    [23] [23] KANG S S, REN Y, LIU C C, et al. Lipocalin-2 protects the brain during inflammatory conditions[J]. Molecular Psychiatry, 2018, 23(2): 344-350.

    [24] [24] SINGH V, YEOH B S, CHASSAING B, et al. Microbiota-inducible innate immune siderophore binding protein lipocalin 2 is critical for intestinal homeostasis[J]. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2(4): 482-498.

    [25] [25] ROUDKENAR M H, HALABIAN R, GHASEMIPOUR Z, et al. Neutrophil gelatinase-associated lipocalin acts as a protective factor against H2O2 toxicity[J]. Archives of Medical Research, 2008, 39(6): 560-566.

    [26] [26] ZHAO S, WEI Y, XU D. Neutrophil gelatinase-associated lipocalin attenuates injury in the rat cecal ligation and puncture model of sepsis via apoptosis inhibition[J]. Nephrology, 2015, 20(9): 646-653.

    [27] [27] KIM S L, MIN I S, PARK Y R, et al. Lipocalin 2 inversely regulates TRAIL sensitivity through p38 MAPK-mediated DR5 regulation in colorectal cancer[J]. International Journal of Oncology, 2018, 53(6): 2789-2799.

    [28] [28] ZHAO P, STEPHENS J M. STAT1, NF-κB and ERKs play a role in the induction of lipocalin-2 expression in adipocytes[J]. Molecular Metabolism, 2013, 2(3): 161-170.

    [29] [29] REICHMANN N T, ANGELIKA GRNDLING. Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes[J]. Fems Microbiology Letters, 2011, 319(2): 97-105.

    [30] [30] HOTCHKISS R S, MONNERET G, PAYEN D. Immunosuppression in sepsis:a novel understanding of the disorder and a new therapeutic approach[J]. The Lancet Infectious Diseases, 2013, 13(3): 260-268.

    Tools

    Get Citation

    Copy Citation Text

    WANG Yongxiang, ZHANG Zijian, LIU Rushi, XIONG Li, LIU Kai, HUANG Yunpeng, YANG Yang, CHEN Dan, WEN Yu. Analysis of Differential Genes and Potential Pathways in Liver Damaged Microarray of CLP Sepsis Model[J]. Acta Laser Biology Sinica, 2020, 29(3): 208

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 12, 2020

    Accepted: --

    Published Online: Aug. 6, 2020

    The Author Email:

    DOI:10.3969/j.issn.1007-7146.2020.03.003

    Topics