Acta Optica Sinica, Volume. 44, Issue 10, 1026010(2024)

Chiral Phenomena Related to Bound States in Continuum in Photonics(Invited)

Kang Du1, Yixuan Zeng1, Xu Ouyang1, Xudong Zhang1, Shumin Xiao1,2, and Qinghai Song1,2、*
Author Affiliations
  • 1Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, Guangdong , China
  • 2Pengcheng Laboratory, Shenzhen 518055, Guangdong , China
  • show less
    References(122)

    [1] Li A D, Wei H, Cotrufo M et al. Exceptional points and non-Hermitian photonics at the nanoscale[J]. Nature Nanotechnology, 18, 706-720(2023).

    [2] Chen H Z, Liu T, Luan H Y et al. Revealing the missing dimension at an exceptional point[J]. Nature Physics, 16, 571-578(2020).

    [3] Koshelev K, Bogdanov A, Kivshar Y. Engineering with bound states in the continuum[J]. Optics & Photonics News, 31, 38(2020).

    [4] Marinica D C, Borisov A G, Shabanov S V. Bound states in the continuum in photonics[J]. Physical Review Letters, 100, 183902(2008).

    [5] Plotnik Y, Peleg O, Dreisow F et al. Experimental observation of optical bound states in the continuum[J]. Physical Review Letters, 107, 183901(2011).

    [6] Hsu C W, Zhen B, Lee J et al. Observation of trapped light within the radiation continuum[J]. Nature, 499, 188-191(2013).

    [7] Zhen B, Hsu C W, Lu L et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 113, 257401(2014).

    [8] Doeleman H M, Monticone F, den Hollander W et al. Experimental observation of a polarization vortex at an optical bound state in the continuum[J]. Nature Photonics, 12, 397-401(2018).

    [9] Zhang Y W, Chen A, Liu W Z et al. Observation of polarization vortices in momentum space[J]. Physical Review Letters, 120, 186103(2018).

    [10] Chen Y, Du W, Zhang Q et al. Multidimensional nanoscopic chiroptics[J]. Nature Reviews Physics, 4, 113-124(2022).

    [11] Mun J, Kim M, Yang Y et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena[J]. Light: Science & Applications, 9, 139(2020).

    [12] Fernandez-Corbaton I, Fruhnert M, Rockstuhl C. Objects of maximum electromagnetic chirality[J]. Physical Review X, 6, 031013(2016).

    [13] Overvig A C, Malek S C, Yu N F. Multifunctional nonlocal metasurfaces[J]. Physical Review Letters, 125, 017402(2020).

    [14] Overvig A C, Malek S C, Carter M J et al. Selection rules for quasibound states in the continuum[J]. Physical Review B, 102, 035434(2020).

    [15] Gorkunov M V, Antonov A A, Kivshar Y S. Metasurfaces with maximum chirality empowered by bound states in the continuum[J]. Physical Review Letters, 125, 093903(2020).

    [16] Gorkunov M V, Antonov A A, Tuz V R et al. Bound states in the continuum underpin near-lossless maximum chirality in dielectric metasurfaces[J]. Advanced Optical Materials, 9, 2100797(2021).

    [17] Overvig A, Yu N F, Alù A. Chiral quasi-bound states in the continuum[J]. Physical Review Letters, 126, 073001(2021).

    [18] Dixon J, Pan F, Moradifar P et al. Through thick and thin: how optical cavities control spin[J]. Nanophotonics, 12, 2779-2788(2023).

    [19] Zhang X D, Liu Y L, Han J C et al. Chiral emission from resonant metasurfaces[J]. Science, 377, 1215-1218(2022).

    [20] Chen Y, Deng H C, Sha X B et al. Observation of intrinsic chiral bound states in the continuum[J]. Nature, 613, 474-478(2023).

    [21] Hsu C W, Zhen B, Stone A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).

    [22] Sadreev A F. Interference traps waves in an open system: bound states in the continuum[J]. Reports on Progress in Physics, 84, 055901(2021).

    [23] Yao J Q, Li J T, Zhang Y T et al. Bound states in continuum in periodic optical systems[J]. Chinese Optics, 16, 1-23(2023).

    [24] Kang M, Liu T, Chan C T et al. Applications of bound states in the continuum in photonics[J]. Nature Reviews Physics, 5, 659-678(2023).

    [25] Xu G Z, Xing H Y, Xue Z Q et al. Recent advances and perspective of photonic bound states in the continuum[J]. Ultrafast Science, 3, 33(2023).

    [26] Joseph S, Pandey S, Sarkar S et al. Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications[J]. Nanophotonics, 10, 4175-4207(2021).

    [27] Koshelev K L, Sadrieva Z F, Shcherbakov A A et al. Bound states in the continuum in photonic structures[J]. Physics-Uspekhi, 66, 494-517(2021).

    [28] Bi Q H, Peng Y J, Chen R et al. Theory and application of bound states in the continuum in photonics[J]. Acta Optica Sinica, 43, 1623008(2023).

    [29] Hu P, Wang J J, Jiang Q et al. Global phase diagram of bound states in the continuum[J]. Optica, 9, 1353-1361(2022).

    [30] Hsu C W, Zhen B, Chua S L et al. Bloch surface eigenstates within the radiation continuum[J]. Light: Science & Applications, 2, e84(2013).

    [31] Sadrieva Z, Frizyuk K, Petrov M et al. Multipolar origin of bound states in the continuum[J]. Physical Review B, 100, 115303(2019).

    [32] Azzam S I, Shalaev V M, Boltasseva A et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems[J]. Physical Review Letters, 121, 253901(2018).

    [33] Rybin M V, Koshelev K L, Sadrieva Z F et al. High-Q supercavity modes in subwavelength dielectric resonators[J]. Physical Review Letters, 119, 243901(2017).

    [34] Monticone F, Doeleman H M, Den Hollander W et al. Trapping light in plain sight: embedded photonic eigenstates in zero-index metamaterials[J]. Laser & Photonics Reviews, 12, 1700220(2018).

    [35] Bogdanov A A, Koshelev K L, Kapitanova P V et al. Bound states in the continuum and Fano resonances in the strong mode coupling regime[J]. Advanced Photonics, 1, 016001(2019).

    [36] Huang L J, Xu L, Powell D A et al. Resonant leaky modes in all-dielectric metasystems: fundamentals and applications[J]. Physics Reports, 1008, 1-66(2023).

    [37] Dong Z G, Mahfoud Z, Paniagua-Domínguez R et al. Nanoscale mapping of optically inaccessible bound-states-in-the-continuum[J]. Light: Science & Applications, 11, 20(2022).

    [38] Overvig A, Alù A. Wavefront-selective Fano resonant metasurfaces[J]. Advanced Photonics, 3, 026002(2021).

    [39] Koshelev K, Lepeshov S, Liu M K et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 121, 193903(2018).

    [40] Han S, Pitchappa P, Wang W H et al. Extended bound states in the continuum with symmetry-broken terahertz dielectric metasurfaces[J]. Advanced Optical Materials, 9, 2002001(2021).

    [41] Liu Z J, Xu Y, Lin Y et al. High-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 123, 253901(2019).

    [42] Ndao A, Hsu L, Cai W et al. Differentiating and quantifying exosome secretion from a single cell using quasi-bound states in the continuum[J]. Nanophotonics, 9, 1081-1086(2020).

    [43] Kang M, Mao L, Zhang S P et al. Merging bound states in the continuum by harnessing higher-order topological charges[J]. Light: Science & Applications, 11, 228(2022).

    [44] Chen Z H, Yin X F, Jin J C et al. Observation of miniaturized bound states in the continuum with ultra-high quality factors[J]. Science Bulletin, 67, 359-366(2022).

    [45] Jin J C, Yin X F, Ni L F et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 574, 501-504(2019).

    [46] Bulgakov E N, Maksimov D N. Topological bound states in the continuum in arrays of dielectric spheres[J]. Physical Review Letters, 118, 267401(2017).

    [47] Kang M, Zhang S P, Xiao M et al. Merging bound states in the continuum at off-high symmetry points[J]. Physical Review Letters, 126, 117402(2021).

    [48] Liu W Z, Wang B, Zhang Y W et al. Circularly polarized states spawning from bound states in the continuum[J]. Physical Review Letters, 123, 116104(2019).

    [49] Ye W M, Gao Y, Liu J L. Singular points of polarizations in the momentum space of photonic crystal slabs[J]. Physical Review Letters, 124, 153904(2020).

    [50] Yoda T, Notomi M. Generation and annihilation of topologically protected bound states in the continuum and circularly polarized states by symmetry breaking[J]. Physical Review Letters, 125, 053902(2020).

    [51] Zeng Y X, Hu G W, Liu K P et al. Dynamics of topological polarization singularity in momentum space[J]. Physical Review Letters, 127, 176101(2021).

    [52] Yin X F, Jin J C, Soljačić M et al. Observation of topologically enabled unidirectional guided resonances[J]. Nature, 580, 467-471(2020).

    [53] Barron L D. True and false chirality and absolute enantioselection[J]. Rendiconti Lincei, 24, 179-189(2013).

    [54] Gansel J K, Thiel M, Rill M S et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 325, 1513-1515(2009).

    [55] Hentschel M, Wu L, Schäferling M et al. Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons[J]. ACS Nano, 6, 10355-10365(2012).

    [56] Zhang S, Zhou J F, Park Y S et al. Photoinduced handedness switching in terahertz chiral metamolecules[J]. Nature Communications, 3, 942(2012).

    [57] Cui Y H, Kang L, Lan S F et al. Giant chiral optical response from a twisted-arc metamaterial[J]. Nano Letters, 14, 1021-1025(2014).

    [58] Wu Z L, Chen X D, Wang M S et al. High-performance ultrathin active chiral metamaterials[J]. ACS Nano, 12, 5030-5041(2018).

    [59] Ji C Y, Chen S S, Han Y et al. Artificial propeller chirality and counterintuitive reversal of circular dichroism in twisted meta-molecules[J]. Nano Letters, 21, 6828-6834(2021).

    [60] Shen Z L, Fan S T, Yin W et al. Chiral metasurfaces with maximum circular dichroism enabled by out-of-plane plasmonic system[J]. Laser & Photonics Reviews, 16, 2200370(2022).

    [61] Kuwata-Gonokami M, Saito N, Ino Y et al. Giant optical activity in quasi-two-dimensional planar nanostructures[J]. Physical Review Letters, 95, 227401(2005).

    [62] Plum E, Fedotov V A, Zheludev N I. Optical activity in extrinsically chiral metamaterial[J]. Applied Physics Letters, 93, 191911(2008).

    [63] Plum E, Liu X X, Fedotov V A et al. Metamaterials: optical activity without chirality[J]. Physical Review Letters, 102, 113902(2009).

    [64] Plum E, Fedotov V A, Zheludev N I. Extrinsic electromagnetic chirality in metamaterials[J]. Journal of Optics A: Pure and Applied Optics, 11, 074009(2009).

    [65] Zhu A Y, Chen W T, Zaidi A et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures[J]. Light: Science & Applications, 7, 17158(2018).

    [66] Dixon J, Lawrence M, Barton D R et al. Self-isolated Raman lasing with a chiral dielectric metasurface[J]. Physical Review Letters, 126, 123201(2021).

    [67] Lim Y, Seo I C, An S et al. Maximally chiral emission via chiral quasi bound states in the continuum[J]. Laser & Photonics Reviews, 17, 2200611(2023).

    [68] Tang Y H, Liang Y, Yao J et al. Chiral bound states in the continuum in plasmonic metasurfaces[J]. Laser & Photonics Reviews, 17, 2200597(2023).

    [69] Wu J J, Xu X T, Su X Q et al. Observation of giant extrinsic chirality empowered by quasi-bound states in the continuum[J]. Physical Review Applied, 16, 064018(2021).

    [70] Shen Z L, Fang X D, Li S N et al. Terahertz spin-selective perfect absorption enabled by quasi-bound states in the continuum[J]. Optics Letters, 47, 505-508(2022).

    [71] Kim K H, Kim J R. High-Q chiroptical resonances by quasi-bound states in the continuum in dielectric metasurfaces with simultaneously broken in-plane inversion and mirror symmetries[J]. Advanced Optical Materials, 9, 2101162(2021).

    [72] Semnani B, Flannery J, Al Maruf R et al. Spin-preserving chiral photonic crystal mirror[J]. Light: Science & Applications, 9, 23(2020).

    [73] Khanikaev A B, Arju N, Fan Z et al. Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials[J]. Nature Communications, 7, 12045(2016).

    [74] Wu C, Arju N, Kelp G et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances[J]. Nature Communications, 5, 3892(2014).

    [75] Shi T, Deng Z L, Geng G Z et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum[J]. Nature Communications, 13, 4111(2022).

    [76] Chen W J, Yang Q D, Chen Y T et al. Extremize optical chiralities through polarization singularities[J]. Physical Review Letters, 126, 253901(2021).

    [77] Kühner L, Wendisch F J, Antonov A A et al. Unlocking the out-of-plane dimension for photonic bound states in the continuum to achieve maximum optical chirality[J]. Light: Science & Applications, 12, 250(2023).

    [78] Koshelev K, Kruk S, Melik-Gaykazyan E et al. Subwavelength dielectric resonators for nonlinear nanophotonics[J]. Science, 367, 288-292(2020).

    [79] Koshelev K, Tang Y T, Li K et al. Nonlinear metasurfaces governed by bound states in the continuum[J]. ACS Photonics, 6, 1639-1644(2019).

    [80] Zograf G, Koshelev K, Zalogina A et al. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum[J]. ACS Photonics, 9, 567-574(2022).

    [81] Camacho-Morales R, Xu L, Zhang H Z et al. Sum-frequency generation in high-Q GaP metasurfaces driven by leaky-wave guided modes[J]. Nano Letters, 22, 6141-6148(2022).

    [82] Koshelev K, Tonkaev P, Kivshar Y. Nonlinear chiral metaphotonics: a perspective[J]. Advanced Photonics, 5, 064001(2023).

    [83] Gandolfi M, Tognazzi A, Rocco D et al. Near-unity third-harmonic circular dichroism driven by a quasibound state in the continuum in asymmetric silicon metasurfaces[J]. Physical Review A, 104, 023524(2021).

    [84] Liu Q S, Chao M H, Zhang W J et al. Dual-band chiral nonlinear metasurface supported by quasibound states in the continuum[J]. Annalen Der Physik, 534, 2200263(2022).

    [85] Koshelev K, Tang Y T, Hu Z X et al. Resonant chiral effects in nonlinear dielectric metasurfaces[J]. ACS Photonics, 10, 298-306(2023).

    [86] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 3, 161(2011).

    [87] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 90(2019).

    [88] Ni J C, Huang C, Zhou L M et al. Multidimensional phase singularities in nanophotonics[J]. Science, 374, eabj0039(2021).

    [89] Iwahashi S, Kurosaka Y, Sakai K et al. Higher-order vector beams produced by photonic-crystal lasers[J]. Optics Express, 19, 11963-11968(2011).

    [90] Wang B, Liu W Z, Zhao M X et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum[J]. Nature Photonics, 14, 623-628(2020).

    [91] Notomi M. Topology in momentum space becomes real[J]. Nature Photonics, 14, 595-596(2020).

    [92] Huang C, Zhang C, Xiao S M et al. Ultrafast control of vortex microlasers[J]. Science, 367, 1018-1021(2020).

    [93] Wang J, Clementi M, Minkov M et al. Doubly resonant second-harmonic generation of a vortex beam from a bound state in the continuum[J]. Optica, 7, 1126-1132(2020).

    [94] Kang L, Wu Y H, Ma X Z et al. High-harmonic optical vortex generation from photonic bound states in the continuum[J]. Advanced Optical Materials, 10, 2101497(2022).

    [95] Liu W Z, Shi L, Zi J et al. Ways to achieve efficient non-local vortex beam generation[J]. Nanophotonics, 10, 4297-4304(2021).

    [96] Li T Y, Wang J J, Zhang W J et al. High-efficiency nonlocal reflection-type vortex beam generation based on bound states in the continuum[J]. National Science Review, 10, nwac234(2022).

    [97] Mohammadi E, Tavakoli A, Dehkhoda P et al. Accessible superchiral near-fields driven by tailored electric and magnetic resonances in all-dielectric nanostructures[J]. ACS Photonics, 6, 1939-1946(2019).

    [98] Hu J, Lawrence M, Dionne J A. High quality factor dielectric metasurfaces for ultraviolet circular dichroism spectroscopy[J]. ACS Photonics, 7, 36-42(2020).

    [99] Du K, Li P, Wang H et al. Optical chirality enhancement in hollow silicon disk by dipolar interference[J]. Advanced Optical Materials, 9, 2001771(2021).

    [100] Chen Y, Zhao C, Zhang Y Z et al. Integrated molar chiral sensing based on high-Q metasurface[J]. Nano Letters, 20, 8696-8703(2020).

    [101] Wu T, Zhang W X, Zhang H Z et al. Vector exceptional points with strong superchiral fields[J]. Physical Review Letters, 124, 083901(2020).

    [102] Barkaoui H, Du K, Chen Y M et al. Merged bound states in the continuum for giant superchiral field and chiral mode splitting[J]. Physical Review B, 107, 045305(2023).

    [103] Li J H, Ren J, Zhang X D. Three-dimensional vector wave bound states in a continuum[J]. Journal of the Optical Society of America B, 34, 559-565(2017).

    [104] Zhang H Z, Zhang W X, Chen S H et al. Experimental observation of vector bound states in the continuum[J]. Advanced Optical Materials, 11, 2203118(2023).

    [105] Ling X H, Zhou X X, Huang K et al. Recent advances in the spin Hall effect of light[J]. Reports on Progress in Physics, 80, 066401(2017).

    [106] Kim M, Yang Y, Lee D et al. Spin hall effect of light: from fundamentals to recent advancements[J]. Laser & Photonics Reviews, 17, 2200046(2023).

    [107] Feng J, Wang B, Chen X F. Photonic spin Hall effect in micro- and nano-optics[J]. Acta Optica Sinica, 43, 1623003(2023).

    [108] Wang J J, Shi L, Zi J. Spin Hall effect of light via momentum-space topological vortices around bound states in the continuum[J]. Physical Review Letters, 129, 236101(2022).

    [109] Wang J J, Zhao M X, Liu W Z et al. Shifting beams at normal incidence via controlling momentum-space geometric phases[J]. Nature Communications, 12, 6046(2021).

    [110] Jiang X, Tang J, Li Z F et al. Enhancement of photonic spin Hall effect via bound states in the continuum[J]. Journal of Physics D: Applied Physics, 52, 045401(2019).

    [111] Song Y F, Shu Y T, Jiang T et al. Enhanced spin Hall effect of light in the PT-symmetric trilayer structure containing epsilon-near-zero materials[J]. Journal of Physics D: Applied Physics, 56, 175102(2023).

    [112] Wu F, Liu T T, Long Y et al. Giant photonic spin Hall effect empowered by polarization-dependent quasibound states in the continuum in compound grating waveguide structures[J]. Physical Review B, 107, 165428(2023).

    [113] Zito G, Romano S, Cabrini S et al. Observation of spin-polarized directive coupling of light at bound states in the continuum[J]. Optica, 6, 1305-1312(2019).

    [114] Kodigala A, Lepetit T, Gu Q et al. Lasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).

    [115] Yesilkoy F, Arvelo E R, Jahani Y et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 13, 390-396(2019).

    [116] Guo Y, Xiao M, Fan S H. Topologically protected complete polarization conversion[J]. Physical Review Letters, 119, 167401(2017).

    [117] Overvig A, Alù A. Diffractive nonlocal metasurfaces[J]. Laser & Photonics Reviews, 16, 2100633(2022).

    [118] Zhao C, Chen W J, Wei J X et al. Electrically tunable and robust bound states in the continuum enabled by 2D transition metal dichalcogenide[J]. Advanced Optical Materials, 10, 2201634(2022).

    [119] Song Q J, Hu J S, Dai S W et al. Coexistence of a new type of bound state in the continuum and a lasing threshold mode induced by PT symmetry[J]. Science Advances, 6, eabc1160(2020).

    [120] Huang L, Zhang W X, Zhang X D. Moiré quasibound states in the continuum[J]. Physical Review Letters, 128, 253901(2022).

    [121] Ma W, Liu Z C, Kudyshev Z A et al. Deep learning for the design of photonic structures[J]. Nature Photonics, 15, 77-90(2021).

    [122] Deng R H, Liu W Z, Shi L. Inverse design in photonic crystals[J]. Nanophotonics, 13, 1219-1237(2024).

    Tools

    Get Citation

    Copy Citation Text

    Kang Du, Yixuan Zeng, Xu Ouyang, Xudong Zhang, Shumin Xiao, Qinghai Song. Chiral Phenomena Related to Bound States in Continuum in Photonics(Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Feb. 8, 2024

    Accepted: Mar. 29, 2024

    Published Online: Apr. 30, 2024

    The Author Email: Qinghai Song (qinghai.song@hit.edu.cn)

    DOI:10.3788/AOS240632

    CSTR:32393.14.AOS240632

    Topics