Infrared Technology, Volume. 46, Issue 10, 1107(2024)

Application of Ultraviolet Image Intensifiers in Combustion Diagnostics of Aero-engines

Junhui MA1, Lingxue WANG1,2、*, Jingling HU1, Dezhi ZHENG1,2, Haocheng WEN3, Bing WANG3, and Yi CAI1
Author Affiliations
  • 1MIIT Key Laboratory of Complex-Field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Complex Environment Sensing Center, Beijing Institute of Technology, Zhuhai 519088, China
  • 3School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
  • show less
    References(43)

    [2] [2] Gaydon A G, Wolfhard H G. Flames, Their Structure, Radiation and Temperature[M]. London: Chapman & Hall, 1960.

    [3] [3] Gutman David. Shock-tube study of the recombination rate of hydrogen atoms with oxygen molecules[J]. Journal of Chemical Physics, 1967, 47(11): 4400-4407.

    [4] [4] Pietzka G. The Spectroscopy of Flames[M]. London: Chapman & Hall, 1974.

    [5] [5] Panoutsos C S, Hardalupas Y, Taylor A. Numerical evaluation of equivalence ratio measurement using OH* and CH* chemiluminescence in premixed and non-premixed methane–air flames[J]. Combustion and Flame, 2009, 156(2): 273-291.

    [6] [6] ZHU H, GONG Y, HE L, et al. Effects of CO and H2 addition on OH* chemiluminescence characteristics in laminar rich inverse diffusion flames[J]. Fuel, 2019, 254: 115554.

    [7] [7] YANG J, GONG Y, WEI J, et al. Chemiluminescence diagnosis of oxygen/fuel ratio in fuel-rich jet diffusion flames[J]. Fuel Processing Technology, 2022, 232: 107284.

    [8] [8] Lauer M, Zellhuber M, Sattelmayer T, et al. Determination of the heat release distribution in turbulent flames by a model based correction of OH* chemiluminescence[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(12): 121501.

    [9] [9] Kim T Y, Choi S, Kim H K, et al. Combustion properties of gaseous CH4/O2 coaxial jet flames in a single-element combustor[J]. Fuel, 2016, 184: 28-35.

    [10] [10] HE L, GUO Q, GONG Y, et al. Investigation of OH* chemiluminescence and heat release in laminar methane–oxygen co-flow diffusion flames[J]. Combustion and Flame, 2019, 201: 12-22.

    [11] [11] Kojima J, Ikeda Y, Nakajima T. Basic aspects of OH (A), CH (A), and C2 (d) chemiluminescence in the reaction zone of laminar methane–air premixed flames[J]. Combustion and Flame, 2005, 140(1-2): 34-45.

    [12] [12] NI S, ZHAO D, YOU Y, et al. NOx emission and energy conversion efficiency studies on ammonia-powered micro-combustor with ring-shaped ribs in fuel-rich combustion[J]. Journal of Cleaner Production, 2021, 320: 128901.

    [13] [13] Docquier N, Sbastien Candel. Combustion control and sensors: a review[J]. Progress in Energy and Combustion Science, 2002, 28(2): 107-150.

    [14] [14] WANG T, WANG Z, TAN J, et al. Combustion characteristics of a confined turbulent jet flame[J]. Fuel, 2022, 323: 124228.

    [15] [15] Weber V, Bruebach J, Gordon R L, et al. Pixel-based characterization of CMOS high-speed camera systems[J]. Applied Physics B, 2011, 103(2): 421-433.

    [16] [16] ZHANG Z, YANG A, WANG J, et al. OH planar laser-induced fluorescence imaging system using a kilohertz-rate 283 nm UV Ti laser[J]. Applied Optics, 2023, 62(8): 1915-1920.

    [18] [18] Gerke U, Steurs K, Rebecchi P, et al. Derivation of burning velocities of premixed hydrogen/air flames at engine-relevant conditions using a single-cylinder compression machine with optical access[J]. International Journal of Hydrogen Energy, 2010, 35(6): 2566-2577.

    [19] [19] Handland Imaging. LaVision HighSpeed IRO X Image Intensifier[EB/OL]. [2024-10-15]. https://hadlandimaging.com/lavision-highspeed-iro-x-image-intensifier/.

    [20] [20] Ferris M, Susa J, Davidson F, et al. High-temperature laminar flame speed measurements in a shock tube[J]. Combustion and Flame, 2019, 205: 241-252.

    [21] [21] Pugh D, Runyon J, Bowen P, et al. An investigation of ammonia primary flame combustor concepts for emissions reduction with OH*, NH2* and NH* chemiluminescence at elevated conditions[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6451-6459.

    [22] [22] LI X, DONG J, JIN K, et al. Flame acceleration and deflagration-to-detonation transition in a channel with continuous triangular obstacles: effect of equivalence ratio[J]. Process Safety and Environmental Protection, 2022, 167: 576-591.

    [23] [23] Ishino Y, Ohiwa N. Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame[J]. JSME International Journal Series B Fluids and Thermal Engineering, 2005, 48(1): 34-40.

    [24] [24] Unterberger A, Rder M, Giese A, et al. 3D instantaneous reconstruction of turbulent industrial flames using computed tomography of chemiluminescence (CTC)[J]. Journal of Combustion, 2018, 2018(1): 5373829.

    [25] [25] JIN Y, SONG Y, WANG W, et al. An improved calculation model of weight coefficient for three-dimensional flame chemiluminescence tomography based on lens imaging theory[C]//Real-Time Photonic Measurements, Data Management, and Processing II of SPIE, 2016, 10026: 139-147.

    [26] [26] JIN Y, SONG Y, QU X, et al. Three-dimensional dynamic measurements of CH* and C2* concentrations in flame using simultaneous chemiluminescence tomography[J]. Optics Express, 2017, 25(5): 4640-4654.

    [27] [27] Upton T, Verhoeven D, Hudgins D, et al. High-resolution computed tomography of a turbulent reacting flow[J]. Experiments in Fluids, 2011, 50: 125-134.

    [28] [28] CAI W, LI X, LI F, et al. Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence[J]. Optics Express, 2013, 21(6): 7050-7064.

    [29] [29] CAI W, Kaminski C. Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows[J]. Progress in Energy and Combustion Science, 2017, 59: 1-31.

    [30] [30] Anikin N, Suntz R, Bockhorn H. Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames[J]. Applied Physics B, 2010, 100: 675-694.

    [31] [31] Anikin N B, Suntz R, Bockhorn H. Tomographic reconstruction of 2D-OH*-chemiluminescence distributions in turbulent diffusion flames[J]. Applied Physics B, 2012, 107: 591-602.

    [32] [32] Worth N A, Dawson J R. Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames[J]. Measurement Science and Technology, 2013, 24(2): 024013.

    [33] [33] LV L, TAN J, HU Y. Numerical and experimental investigation of computed tomography of chemiluminescence for hydrogen-air premixed laminar flames[J]. International Journal of Aerospace Engineering, 2016, 2016(1): 6938145.

    [34] [34] Hber T, Suntz R, Bockhorn H. Two-dimensional tomographic simultaneous multispecies visualization—Part II: Reconstruction accuracy[J]. Energies, 2020, 13(9): 2368.

    [35] [35] LIU H, YU T, ZHANG M, et al. Demonstration of 3D computed tomography of chemiluminescence with a restricted field of view[J]. Applied Optics, 2017, 56(25): 7107-7115.

    [36] [36] WANG Q, YU T, LIU H, et al. Optimization of camera arrangement for volumetric tomography with constrained optical access[J]. JOSA B, 2020, 37(4): 1231-1239.

    [37] [37] Hughes K J, Pourkashanian M, Wilson C W. OH concentration measurements in a jet engine exhaust[J]. International Journal of Energy for a Clean Environment, 2007, 8(4): 305-320.

    [43] [43] Ben Yakar A, Kamel M, Morris C, et al. Hypersonic combustion and mixing studies using simultaneous OH-PLIF and schlieren imaging[C]//36th AIAA Aerospace Sciences Meeting And Exhibit, 1998: 940.

    [44] [44] Ben Yakar A, Hanson R. Hypervelocity combustion studies using simultaneous OH-PLIF and schilieren imaging in an expansion tube[C]//35th Joint Propulsion Conference and Exhibit, 1999: 2453.

    [45] [45] Morris C, Kamel M, Ben Yakar A, et al. Combined schilieren and OH PLIF imaging study of ram accelerator flowfields[C]//36th AIAA Aerospace Sciences Meeting and Exhibit, 1998: 244.

    [47] [47] Paschal T, Parajuli P, Turner M A, et al. High-speed OH* and CH* chemiluminescence imaging and OH planar laser-induced fluorescence (PLIF) in spherically expanding flames[C]//AIAA Scitech 2019 Forum, 2019: 574.

    [48] [48] Smith J D, Sick V. High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine[J]. Applied Optics, 2005, 44(31): 6682-6691.

    [49] [49] LI Z S, LI B, SUN Z W, et al. Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame[J]. Combustion & Flame, 2010, 157(6): 1087-1096.

    [50] [50] Malbois P, Salan E, Rossow B, et al. Quantitative measurements of fuel distribution and flame structure in a lean-premixed aero-engine injection system by kerosene/OH-PLIF measurements under high-pressure conditions[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5215-5222.

    [51] [51] Litvinov I, Yoon J, Noren C, et al. Time-resolved study of mixing and reaction in an aero-engine model combustor at increased pressure[J]. Combustion and Flame, 2021, 231: 111474.

    Tools

    Get Citation

    Copy Citation Text

    MA Junhui, WANG Lingxue, HU Jingling, ZHENG Dezhi, WEN Haocheng, WANG Bing, CAI Yi. Application of Ultraviolet Image Intensifiers in Combustion Diagnostics of Aero-engines[J]. Infrared Technology, 2024, 46(10): 1107

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 25, 2024

    Accepted: Jan. 10, 2025

    Published Online: Jan. 10, 2025

    The Author Email: Lingxue WANG (neobull@bit.edu.cn)

    DOI:

    Topics