Acta Photonica Sinica, Volume. 53, Issue 5, 0553113(2024)
Polycrystalline Silicon Cascade Self-luminous Devices in Monolithic Sensing Systems
[1] BOYRAZ O, JALALI B. Demonstration of a silicon Raman laser[J]. Optics Express, 12, 5269-5273(2004).
[2] CULLIS A, CANHAM L, CALCOTT P. The structural and luminescence properties of porous silicon[J]. Journal of Applied Physics, 82, 909-965(1997).
[3] DE BOER W, TIMMERMAN D, DOHNALOVÁ K et al. Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals[J]. Nature Nanotechnology, 5, 878-884(2010).
[4] BRUNNER J, MENCZIGAR U, GAIL M et al. Influence of growth conditions on the photoluminescence of pseudomorphic MBE grown Si1-xGex quantum wells[J]. Journal of Crystal Growth, 127, 443-446(1993).
[5] ZHOU Yiyin, MIAO Yuanhao, OJO S et al. Electrically injected GeSn lasers on Si operating up to 100 K[J]. Optica, 7, 924-928(2020).
[6] NEWMAN R. Visible light from a silicon p-n junction[J]. Physical Review, 100, 700-704(1955).
[7] XU Kaikai, LI G. A novel way to improve the quantum efficiency of silicon light-emitting diode in a standard silicon complementary metal-oxide-semiconductor technology[J]. Journal of Applied Physics, 113, 103106(2013).
[8] PLESSIS M, VENTER P, BOGALECKI A. Using reach-through techniques to improve the external power efficiency of silicon CMOS light emitting devices[C], 7606(2010).
[9] DUTTA S, HUETING R, ANNEMA A et al. Opto-electronic modeling of light emission from avalanche-mode silicon p+ n junctions[J]. Journal of Applied Physics, 118, 114506(2015).
[10] AHARONI H, PLESSIS M. Low-operating-voltage integrated silicon light-emitting devices[J]. IEEE Journal of Quantum Electronics, 40, 557-563(2004).
[11] PLESSIS M, PETRUS J, ENRICO B. Spectral characteristics of hot electron electroluminescence in silicon avalanching junctions[J]. IEEE Journal of Quantum Electronics, 49, 570-577(2013).
[12] PLESSIS M, WEN Hanqing, BELLOTTI E. Temperature characteristics of hot electron electroluminescence in silicon[J]. Optics Express, 23, 12605-12612(2015).
[13] OKHAI A, SNYMAN L, POLLEUX J. Wavelength dispersion phenomena observed for emitted optical radiation from a p+ nn+ silicon avalanche mode light-emitting device in a radio frequency bipolar-integrated circuitry[J]. Optical Engineering, 58, 017104(2019).
[14] PAN Wanle, CHEN Heming, HU Yuchen. Three-channel integrated device for graphene electro-optic modulation and mode division multiplexin[J]. Acta Photonica Sinica, 52, 0213001(2023).
[15] SHEN Jian, FENG Chenglong, ZHANG Xun et al. Research progress in optoelectronics integration technology based on piezoelectric effect (invited)[J]. Acta Photonica Sinica, 52, 1113001(2023).
[16] LIU Xiaoteng, FENG Jijun, WU Xinyao et al. Silicon waveguide based integrated optical phased array chips (invited)[J]. Acta Photonica Sinica, 49, 1149012(2020).
[17] YU Ting, CHEN Zhuo, LI Tiancheng et al. Precision measurement and theoretical analysis of SOI waveguide transmission loss and butt-coupling loss[J]. Acta Photonica Sinica, 50, 0713001(2021).
[18] YAN Yuewu, AN Junming, ZHANG Jiashun et al. Chip of phase control arrays based on silica on silicon[J]. Acta Photonica Sinica, 48, 0423001(2019).
[19] YIN Xiaojie, WANG Jinghui, ZHENG Zhiyuan et al. Characteristics of low coupling coefficient, narrow linewidth, high order Bragg grating based on SiO2 waveguide[J]. Acta Photonica Sinica, 52, 0405001(2023).
[20] FRIGG A, BOES A, REN G et al. Low loss CMOS-compatible silicon nitride photonics utilizing reactive sputtered thin films[J]. Optics Express, 27, 37795(2019).
[21] MUÑOZ P, MICÓ G, BRU L A et al. Silicon nitride photonic integration platforms for visible, near-infrared and midinfrared applications[J]. Sensors, 17, 2088(2017).
[22] HUANG Lieyun, XIANG Yongjun, SUN Shi. Design of a Si-based 650 nm Enhanced Photodetector[J]. Semiconductor Optoelectronics, 33, 483(2012).
[23] LI Baoquan, LI Fan, CAO Yang et al. Research on accuracy of photon arrival time labeling based on APD single photon detector[J]. Acta Photonica Sinica, 52, 0734003(2023).
[24] LIU Changming, SHI Xueshun, ZHANG Pengju et al. Detection efficiency measurement of silicon single-photon avalanche detector traceable using standard detector[J]. Acta Photonica Sinica, 48, 1248006(2019).
[25] SNYMAN L, XU Kaikai, POLLEUX J et al. Higher intensity SiAvLEDs in an RF bipolar process through carrier energy and carrier momentum engineering[J]. IEEE Journal of Quantum Electronics, 51, 1-10(2015).
[26] XU Kaikai, SUN Weifeng, OGUDO K et al. Silicon avalanche based light emitting diodes and their potential integration into CMOS and RF integrated circuit technology[M]. Optical Communication, 115-141(2014).
[27] SNYMAN L, POLLEUX J, OGUDO K et al. High-intensity 100-nW 5 GHz silicon avalanche LED utilizing carrier energy and momentum engineering[C], 8990, 89900L(2014).
[28] KVEDER V, BADYLEVICH M, SCHROTER W et al. Silicon light-emitting diodes based on dislocation-related luminescence[J]. Physica Status Solidi(a), 202, 901(2005).
[29] BUDE J, SANO N, YOSHII A. Hot-carrier luminescence in Si[J]. Physical Review B, 45, 5848-5856(1992).
[30] SNYMAN L, BELLOTTI E, PLESSIS M. Photonic transitions (1.4 eV-2.8 eV) in silicon p+np+ injection-avalanche CMOS LEDs as function of depletion layer profiling and defect engineering[J]. IEEE Journal of Quantum Electronics, 46, 906-919(2010).
[31] GORIN A, JAOUAD A, GRONDIN E et al. Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties[J]. Optics Express, 16, 13509-13516(2008).
Get Citation
Copy Citation Text
Yu TANG, Qian LUO, Siyang LIU, Lukas W SNYMAN, Kaikai XU. Polycrystalline Silicon Cascade Self-luminous Devices in Monolithic Sensing Systems[J]. Acta Photonica Sinica, 2024, 53(5): 0553113
Category: Special Issue for Microcavity Photonics
Received: Feb. 29, 2024
Accepted: Apr. 10, 2024
Published Online: Jun. 20, 2024
The Author Email: Kaikai XU (kaikaix@uestc.edu.cn)