Journal of the Chinese Ceramic Society, Volume. 53, Issue 5, 1328(2025)

Databases of Cementitious Materials Including Clinker and Their Applications

XU Chengwen1... YE Jiayuan1, GAO Lin2, GAO Guoxian3, REN Xuehong1, XIA Lingfeng4, WANG Lin5 and ZHANG Wensheng1 |Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China
  • 2Anhui Key Laboratory of Green and Low-carbon Technology in Cement Manufacturing, Hefei Cement Research & Design Institute Corporation Ltd. ,Hefei 230051,China
  • 3State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • 4ZhongCun Big Data Technology Co., Ltd, Beijing 100024, China
  • 5Shandong Provincial Key Laboratory of Ubiquitous Intelligent Computing, Jinan University, Jinan 250022, China
  • show less
    References(72)

    [2] [2] WANG W R, JIANG X, TIAN S H, et al. Automated pipeline for superalloy data by text mining[J]. NPJ Comput Mater, 2022, 8: 9.

    [3] [3] WANG W R, JIANG X, TIAN S H, et al. Alloy synthesis and processing by semi-supervised text mining[J]. NPJ Comput Mater, 2023, 9: 183.

    [4] [4] LEE J, YOON W, KIM S, et al. BioBERT: A pre-trained biomedical language representation model for biomedical text mining[J]. Bioinformatics, 2020, 36(4): 1234-1240.

    [5] [5] YANG L, XU S, SELLERGREN A, et al. Advancing multimodal medical capabilities of gemini[EB/OL]. 2024: arXiv: 2405.03162. http://arxiv.org/abs/2405.03162

    [6] [6] SAAB K, TU T, WENG W H, et al. Capabilities of gemini models in medicine[EB/OL]. 2024: arXiv: 2404.18416. http://arxiv.org/abs/ 2404.18416

    [7] [7] BAUM Z J, YU X, AYALA P Y, et al. Artificial intelligence in chemistry: Current trends and future directions[J]. J Chem Inf Model, 2021, 61(7): 3197-3212.

    [13] [13] MISHRA R K, MOHAMED A K, GEISSBHLER D, et al.: A force field database for cementitious materials including validations, applications and opportunities[J]. Cem Concr Res, 2017, 102: 68-89.

    [14] [14] HANEIN T, GLASSER F P, BANNERMAN M N. Thermodynamic data for cement clinkering[J]. Cem Concr Res, 2020, 132: 106043.

    [15] [15] LOTHENBACH B, KULIK D A, MATSCHEI T, et al. Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials[J]. Cem Concr Res, 2019, 115: 472-506.

    [16] [16] DE NOIRFONTAINE M N, TUSSEAU-NENEZ S, GIROD-LABIANCA C, et al. CALPHAD formalism for Portland clinker: Thermodynamic models and databases[J]. J Mater Sci, 2012, 47(3): 1471-1479.

    [18] [18] SHAHSAVARI R, PELLENQ R J M, ULM F J. Empirical force fields for complex hydrated calcio-silicate layered materials[J]. Phys Chem Chem Phys, 2011, 13(3): 1002-1011.

    [19] [19] CYGAN R T, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. J Phys Chem B, 2004, 108(4): 1255-1266.

    [20] [20] SCHRDER K P, SAUER J, LESLIE M, et al. Bridging hydrodyl groups in zeolitic catalysts: A computer simulation of their structure, vibrational properties and acidity in protonated faujasites (H-Y zeolites)[J]. Chem Phys Lett, 1992, 188(3/4): 320-325.

    [21] [21] FREEMAN C L, HARDING J H, COOKE D J, et al. New forcefields for modeling biomineralization processes[J]. J Phys Chem C, 2007, 111(32): 11943-11951.

    [22] [22] LEWIS G V, CATLOW C A. Potential models for ionic oxides[J]. J Phys C Solid State Phys, 1985, 18(6): 1149-1161.

    [23] [23] GALE J D. Empirical potential derivation for ionic materials[J]. Philos Mag B, 1996, 73(1): 3-19.

    [24] [24] MOGHADDAM S E, HEJAZI V, HWANG S H, et al. Morphogenesis of cement hydrate[J]. J Mater Chem A, 2017, 5(8): 3798-3811.

    [25] [25] BONACCORSI E, MERLINO S, KAMPF A R. The crystal structure of tobermorite 14 (plombierite), a C-S-H phase[J]. J Am Ceram Soc, 2005, 88(3): 505-512.

    [26] [26] MISHRA R K, FERNNDEZ-CARRASCO L, FLATT R J, et al. A force field for tricalcium aluminate to characterize surface properties, initial hydration, and organically modified interfaces in atomic resolution[J]. Dalton Trans, 2014, 43(27): 10602-10616.

    [27] [27] MISHRA R K, FLATT R J, HEINZ H. Force field for tricalcium silicate and insight into nanoscale properties: Cleavage, initial hydration, and adsorption of organic molecules[J]. J Phys Chem C, 2013, 117(20): 10417-10432.

    [28] [28] HEINZ H, LIN T J, MISHRA R K, et al. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field[J]. Langmuir, 2013, 29(6): 1754-1765.

    [29] [29] DEHNE G C. Review of McNaught & Wilkinson (1997): Compendium of chemical terminology, IUPAC recommendations[J]. 1997, 4(2): 347-351.

    [30] [30] VAN DUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. J Phys Chem A, 2001, 105(41): 9396-9409.

    [31] [31] VAN DUIN A C T, STRACHAN A, STEWMAN S, et al. ReaxFFSiO reactive force field for silicon and silicon oxide systems[J]. J Phys Chem A, 2003, 107(19): 3803-3811.

    [32] [32] ALLEN F H, TAYLOR R. Research applications of the Cambridge Structural Database (CSD)[J]. Chem Soc Rev, 2004, 33(8): 463-475.

    [33] [33] HELLENBRANDT M. The inorganic crystal structure database (ICSD)—Present and future[J]. Crystallogr Rev, 2004, 10(1): 17-22.

    [34] [34] DOWNS R T, HALL-WALLACE M. The American Mineralogist crystal structure database[J]. Am Mineral, 2003, 88(1): 247-250.

    [35] [35] GRAULIS S, DAKEVI A, MERKYS A, et al. Crystallography Open Database (COD): An open-access collection of crystal structures and platform for world-wide collaboration[J]. Nucleic Acids Res, 2012, 40(Database issue): D420-D427.

    [36] [36] BLANTON T N, HUANG T C, TORAYA H, et al. JCPDS—International Centre for Diffraction Data round robin study of silver behenate. A possible low-angle X-ray diffraction calibration standard[J]. Powder Diffr, 1995, 10(2): 91-95.

    [38] [38] BARRY T I, GLASSER F P. Calculations of Portland cement clinkering reactions[J]. Adv Cem Res, 2000, 12(1): 19-28.

    [39] [39] ANTONOV S, DETROIS M, ISHEIM D, et al. Comparison of thermodynamic database models and APT data for strength modeling in high Nb content -’ Ni-base superalloys[J]. Mater Des, 2015, 86: 649-655.

    [40] [40] BALE C W, BLISLE E, CHARTRAND P, et al. FactSage thermochemical software and databases—Recent developments[J]. Calphad, 2009, 33(2): 295-311.

    [41] [41] GISBY J, TASKINEN P, PIHLASALO J, et al. MTDATA and the prediction of phase equilibria in oxide systems: 30Years of industrial collaboration[J]. Metall Mater Trans B, 2017, 48(1): 91-98.

    [42] [42] KANG Y B, PELTON A D. Thermodynamic model and database for sulfides dissolved in molten oxide slags[J]. Metall Mater Trans B, 2009, 40(6): 979-994.

    [43] [43] MANION J A, HUIE R E, LEVIN R D, et al. NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8, Data version 2015.09[Z]. Gaithersburg, Maryland: National Institute of Standards and Technology, 2015.

    [44] [44] COUGHLIN J P. Heats of formation of crystalline CaO·Al2O3, 12CaO·7Al2O3, and 3CaO·Al2O3[J]. J Am Chem Soc, 1956, 78(21): 5479-5482.

    [45] [45] MYERS R J, BERNAL S A, PROVIS J L. A thermodynamic model for C-(N-) A-S-H gel: CNASH_ss. Derivation and validation[J]. Cem Concr Res, 2014, 66: 27-47.

    [46] [46] KULIK D A, KERSTEN M. Aqueous solubility diagrams for cementitious waste stabilization systems: II, end-member stoichiometries of ideal calcium silicate hydrate solid solutions[J]. J Am Ceram Soc, 2001, 84(12): 3017-3026.

    [47] [47] KULIK D, TITS J, WIELAND E. Aqueous-solid solution model of strontium uptake in CSH phases[J]. Geochim Cosmochim Acta, 2007, 71(S 1): A530.

    [48] [48] LOTHENBACH B, LE SAOUT G, BEN HAHA M, et al. Hydration of a low-alkali CEM III/B-SiO2 cement (LAC)[J]. Cem Concr Res, 2012, 42(2): 410-423.

    [49] [49] KULIK D A. Improving the structural consistency of C-S-H solid solution thermodynamic models[J]. Cem Concr Res, 2011, 41(5): 477-495.

    [50] [50] ZHOU Y F, LI W W, PENG Y X, et al. Hydration and fractal analysis on low-heat Portland cement pastes using thermodynamics-based methods[J]. Fractal Fract, 2023, 7(8): 606.

    [51] [51] LIAO Y S, YAO J X, DENG F, et al. Hydration behavior and strength development of supersulfated cement prepared by calcined phosphogypsum and slaked lime[J]. J Build Eng, 2023, 80: 108075.

    [52] [52] ZHUANG S Y, WANG Q. Inhibition mechanisms of steel slag on the early-age hydration of cement[J]. Cem Concr Res, 2021, 140: 106283.

    [53] [53] YAN J H, WU F N, LI S S, et al. Mechanical and chloride ions solidification performance of C4A3($, P) mineral as promising marine engineering material[J]. Constr Build Mater, 2022, 323: 126553.

    [54] [54] KRISKOVA L, PONTIKES Y, ZHANG F, et al. Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate[J]. Cem Concr Res, 2014, 55: 59-68.

    [60] [60] BLANC P, VIEILLARD P, GAILHANOU H, et al. ThermoChimie database developments in the framework of cement/clay interactions[J]. Appl Geochem, 2015, 55: 95-107.

    [61] [61] ABRAHAM J J, DEVERS C, TEODORIU C, et al. The need for a comprehensive cement database - A novel approach to best practices by cataloging cement properties[C]//Day 3 Wed, November 17, 2021. Abu Dhabi, UAE. SPE.

    [64] [64] TKACHENKO N, TANG K, MCCARTEN M, et al. Global database of cement production assets and upstream suppliers[J]. Sci Data, 2023, 10(1): 696.

    [65] [65] JAYASURIYA A, SHIBATA E S, CHEN T, et al. Development and statistical database analysis of hardened concrete properties made with recycled concrete aggregates[J]. Resour Conserv Recycl, 2021, 164: 105121.

    [66] [66] WENDNER R, VOREL J, SMITH J, et al. Characterization of concrete failure behavior: A comprehensive experimental database for the calibration and validation of concrete models[J]. Mater Struct, 2015, 48(11): 3603-3626.

    [67] [67] BAANT Z P, PANULA L. Practical prediction of time-dependent deformations of concrete[J]. Matriaux Constr, 1978, 11(5): 307-316.

    [68] [68] BAANT Z P, KIM J K. Improved prediction model for time-dependent deformations of concrete: Part 3-Creep at drying[J]. Mater Struct, 1992, 25(1): 21-28.

    [69] [69] BAANT Z P, KIM J K. Improved prediction model for time-dependent deformations of concrete: Part 2—Basic creep[J]. Mater Struct, 1991, 24(6): 409-421.

    [70] [70] BAANT Z P, KIM J K. Improved prediction model for time-dependent deformations of concrete: Part 4—Temperature effects[J]. Mater Struct, 1992, 25(2): 84-94.

    [71] [71] BAANT Z P, KIM J K, PANULA L. Improved prediction model for time-dependent deformations of concrete: Part 1-Shrinkage[J]. Mater Struct, 1991, 24(5): 327-345.

    [72] [72] BAZANT Z P, LI G. Comprehensive database on concrete creep and shrinkage[J]. ACI Mater J, 2008, 105(6): 635-637.

    [73] [73] HUBLER M H, WENDNER R, BAANT Z P. Comprehensive database for concrete creep and shrinkage: Analysis and recommendations for testing and recording[J]. ACI Mater J, 2015, 112(4): 547-558.

    [77] [77] MA P F, ZHANG Y, LI K F, et al. Smart database design for concrete durability analysis - An application in the Hongkong-Zhuhai-Macau bridge[J]. Cem Concr Res, 2023, 163: 107033.

    [78] [78] MCCARTHY G J, SOLEM J K, MANZ O E, et al. Use of a database of chemical, mineralogical and physical properties of North American fly ash to study the nature of fly ashand its utilization as a mineral admixture in concrete[J]. MRS Online Proc Libr, 1989, 178(1): 3-33.

    [79] [79] DIAZ E I, ALLOUCHE E N. Recycling of fly ash into geopolymer concrete: Creation of a database[C]//2010 IEEE Green Technologies Conference. Grapevine, TX, USA. IEEE, 2010: 1-7.

    [80] [80] NAFEES A, AMIN M N, KHAN K, et al. Modeling of mechanical properties of silica fume-based green concrete using machine learning techniques[J]. Polymers, 2021, 14(1): 30.

    [81] [81] PELLEGRINO C, FALESCHINI F. Experimental database of EAF slag use in concrete[M] //Pellegrino C, Faleschini F. Sustainability Improvements in the Concrete Industry: Use of Recycled Materials for Structural Concrete Production. Cham: Springer International Publishing, 2016:141-175.

    [82] [82] CORRADI M, BORRI A. A database of the structural behavior of masonry in shear[J]. Bull Earthq Eng, 2018, 16(9): 3905-3930.

    [83] [83] DE ASSIS GARCIA SOBRINHO R, PIAUHY NETO F, FERNANDES H. Public database of cracks images in mortar coating with different types of surface finishes[J]. Buildings, 2023, 13(7): 1872.

    [84] [84] GILLIGAN L P J, COBELLI M, TAUFOUR V, et al. A rule-free workflow for the automated generation of databases from scientific literature[J]. NPJ Comput Mater, 2023, 9: 222.

    [85] [85] SWAIN M C, COLE J M. ChemDataExtractor: A toolkit for automated extraction of chemical information from the scientific literature[J]. J Chem Inf Model, 2016, 56(10): 1894-1904.

    [86] [86] COURT C J, COLE J M. Auto-generated materials database of Curie and Nel temperatures via semi-supervised relationship extraction[J]. Sci Data, 2018, 5: 180111.

    [87] [87] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. 2013: arXiv: 1301.3781. http://arxiv.org/abs/1301.3781

    [88] [88] PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar. Stroudsburg, PA, USA: Association for Computational Linguistics, 2014: 1532-1543.

    [89] [89] VASWANI A. Attention is all you need[J]. arXiv preprint arXiv: 1706.03762, 2017.

    [90] [90] DEVLIN J, CHANG M, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//BURSTEIN J, DORAN C, SOLORIO T eds. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, Association for Computational Linguistics, 2019: 4171-4186.

    Tools

    Get Citation

    Copy Citation Text

    XU Chengwen, YE Jiayuan, GAO Lin, GAO Guoxian, REN Xuehong, XIA Lingfeng, WANG Lin, ZHANG Wensheng. Databases of Cementitious Materials Including Clinker and Their Applications[J]. Journal of the Chinese Ceramic Society, 2025, 53(5): 1328

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 13, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240594

    Topics