Journal of the Chinese Ceramic Society, Volume. 53, Issue 5, 1328(2025)
Databases of Cementitious Materials Including Clinker and Their Applications
[2] [2] WANG W R, JIANG X, TIAN S H, et al. Automated pipeline for superalloy data by text mining[J]. NPJ Comput Mater, 2022, 8: 9.
[3] [3] WANG W R, JIANG X, TIAN S H, et al. Alloy synthesis and processing by semi-supervised text mining[J]. NPJ Comput Mater, 2023, 9: 183.
[4] [4] LEE J, YOON W, KIM S, et al. BioBERT: A pre-trained biomedical language representation model for biomedical text mining[J]. Bioinformatics, 2020, 36(4): 1234-1240.
[5] [5] YANG L, XU S, SELLERGREN A, et al. Advancing multimodal medical capabilities of gemini[EB/OL]. 2024: arXiv: 2405.03162. http://arxiv.org/abs/2405.03162
[6] [6] SAAB K, TU T, WENG W H, et al. Capabilities of gemini models in medicine[EB/OL]. 2024: arXiv: 2404.18416. http://arxiv.org/abs/ 2404.18416
[7] [7] BAUM Z J, YU X, AYALA P Y, et al. Artificial intelligence in chemistry: Current trends and future directions[J]. J Chem Inf Model, 2021, 61(7): 3197-3212.
[13] [13] MISHRA R K, MOHAMED A K, GEISSBHLER D, et al.: A force field database for cementitious materials including validations, applications and opportunities[J]. Cem Concr Res, 2017, 102: 68-89.
[14] [14] HANEIN T, GLASSER F P, BANNERMAN M N. Thermodynamic data for cement clinkering[J]. Cem Concr Res, 2020, 132: 106043.
[15] [15] LOTHENBACH B, KULIK D A, MATSCHEI T, et al. Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials[J]. Cem Concr Res, 2019, 115: 472-506.
[16] [16] DE NOIRFONTAINE M N, TUSSEAU-NENEZ S, GIROD-LABIANCA C, et al. CALPHAD formalism for Portland clinker: Thermodynamic models and databases[J]. J Mater Sci, 2012, 47(3): 1471-1479.
[18] [18] SHAHSAVARI R, PELLENQ R J M, ULM F J. Empirical force fields for complex hydrated calcio-silicate layered materials[J]. Phys Chem Chem Phys, 2011, 13(3): 1002-1011.
[19] [19] CYGAN R T, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. J Phys Chem B, 2004, 108(4): 1255-1266.
[20] [20] SCHRDER K P, SAUER J, LESLIE M, et al. Bridging hydrodyl groups in zeolitic catalysts: A computer simulation of their structure, vibrational properties and acidity in protonated faujasites (H-Y zeolites)[J]. Chem Phys Lett, 1992, 188(3/4): 320-325.
[21] [21] FREEMAN C L, HARDING J H, COOKE D J, et al. New forcefields for modeling biomineralization processes[J]. J Phys Chem C, 2007, 111(32): 11943-11951.
[22] [22] LEWIS G V, CATLOW C A. Potential models for ionic oxides[J]. J Phys C Solid State Phys, 1985, 18(6): 1149-1161.
[23] [23] GALE J D. Empirical potential derivation for ionic materials[J]. Philos Mag B, 1996, 73(1): 3-19.
[24] [24] MOGHADDAM S E, HEJAZI V, HWANG S H, et al. Morphogenesis of cement hydrate[J]. J Mater Chem A, 2017, 5(8): 3798-3811.
[25] [25] BONACCORSI E, MERLINO S, KAMPF A R. The crystal structure of tobermorite 14 (plombierite), a C-S-H phase[J]. J Am Ceram Soc, 2005, 88(3): 505-512.
[26] [26] MISHRA R K, FERNNDEZ-CARRASCO L, FLATT R J, et al. A force field for tricalcium aluminate to characterize surface properties, initial hydration, and organically modified interfaces in atomic resolution[J]. Dalton Trans, 2014, 43(27): 10602-10616.
[27] [27] MISHRA R K, FLATT R J, HEINZ H. Force field for tricalcium silicate and insight into nanoscale properties: Cleavage, initial hydration, and adsorption of organic molecules[J]. J Phys Chem C, 2013, 117(20): 10417-10432.
[28] [28] HEINZ H, LIN T J, MISHRA R K, et al. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field[J]. Langmuir, 2013, 29(6): 1754-1765.
[29] [29] DEHNE G C. Review of McNaught & Wilkinson (1997): Compendium of chemical terminology, IUPAC recommendations[J]. 1997, 4(2): 347-351.
[30] [30] VAN DUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. J Phys Chem A, 2001, 105(41): 9396-9409.
[31] [31] VAN DUIN A C T, STRACHAN A, STEWMAN S, et al. ReaxFFSiO reactive force field for silicon and silicon oxide systems[J]. J Phys Chem A, 2003, 107(19): 3803-3811.
[32] [32] ALLEN F H, TAYLOR R. Research applications of the Cambridge Structural Database (CSD)[J]. Chem Soc Rev, 2004, 33(8): 463-475.
[33] [33] HELLENBRANDT M. The inorganic crystal structure database (ICSD)—Present and future[J]. Crystallogr Rev, 2004, 10(1): 17-22.
[34] [34] DOWNS R T, HALL-WALLACE M. The American Mineralogist crystal structure database[J]. Am Mineral, 2003, 88(1): 247-250.
[35] [35] GRAULIS S, DAKEVI A, MERKYS A, et al. Crystallography Open Database (COD): An open-access collection of crystal structures and platform for world-wide collaboration[J]. Nucleic Acids Res, 2012, 40(Database issue): D420-D427.
[36] [36] BLANTON T N, HUANG T C, TORAYA H, et al. JCPDS—International Centre for Diffraction Data round robin study of silver behenate. A possible low-angle X-ray diffraction calibration standard[J]. Powder Diffr, 1995, 10(2): 91-95.
[38] [38] BARRY T I, GLASSER F P. Calculations of Portland cement clinkering reactions[J]. Adv Cem Res, 2000, 12(1): 19-28.
[39] [39] ANTONOV S, DETROIS M, ISHEIM D, et al. Comparison of thermodynamic database models and APT data for strength modeling in high Nb content -’ Ni-base superalloys[J]. Mater Des, 2015, 86: 649-655.
[40] [40] BALE C W, BLISLE E, CHARTRAND P, et al. FactSage thermochemical software and databases—Recent developments[J]. Calphad, 2009, 33(2): 295-311.
[41] [41] GISBY J, TASKINEN P, PIHLASALO J, et al. MTDATA and the prediction of phase equilibria in oxide systems: 30Years of industrial collaboration[J]. Metall Mater Trans B, 2017, 48(1): 91-98.
[42] [42] KANG Y B, PELTON A D. Thermodynamic model and database for sulfides dissolved in molten oxide slags[J]. Metall Mater Trans B, 2009, 40(6): 979-994.
[43] [43] MANION J A, HUIE R E, LEVIN R D, et al. NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8, Data version 2015.09[Z]. Gaithersburg, Maryland: National Institute of Standards and Technology, 2015.
[44] [44] COUGHLIN J P. Heats of formation of crystalline CaO·Al2O3, 12CaO·7Al2O3, and 3CaO·Al2O3[J]. J Am Chem Soc, 1956, 78(21): 5479-5482.
[45] [45] MYERS R J, BERNAL S A, PROVIS J L. A thermodynamic model for C-(N-) A-S-H gel: CNASH_ss. Derivation and validation[J]. Cem Concr Res, 2014, 66: 27-47.
[46] [46] KULIK D A, KERSTEN M. Aqueous solubility diagrams for cementitious waste stabilization systems: II, end-member stoichiometries of ideal calcium silicate hydrate solid solutions[J]. J Am Ceram Soc, 2001, 84(12): 3017-3026.
[47] [47] KULIK D, TITS J, WIELAND E. Aqueous-solid solution model of strontium uptake in CSH phases[J]. Geochim Cosmochim Acta, 2007, 71(S 1): A530.
[48] [48] LOTHENBACH B, LE SAOUT G, BEN HAHA M, et al. Hydration of a low-alkali CEM III/B-SiO2 cement (LAC)[J]. Cem Concr Res, 2012, 42(2): 410-423.
[49] [49] KULIK D A. Improving the structural consistency of C-S-H solid solution thermodynamic models[J]. Cem Concr Res, 2011, 41(5): 477-495.
[50] [50] ZHOU Y F, LI W W, PENG Y X, et al. Hydration and fractal analysis on low-heat Portland cement pastes using thermodynamics-based methods[J]. Fractal Fract, 2023, 7(8): 606.
[51] [51] LIAO Y S, YAO J X, DENG F, et al. Hydration behavior and strength development of supersulfated cement prepared by calcined phosphogypsum and slaked lime[J]. J Build Eng, 2023, 80: 108075.
[52] [52] ZHUANG S Y, WANG Q. Inhibition mechanisms of steel slag on the early-age hydration of cement[J]. Cem Concr Res, 2021, 140: 106283.
[53] [53] YAN J H, WU F N, LI S S, et al. Mechanical and chloride ions solidification performance of C4A3($, P) mineral as promising marine engineering material[J]. Constr Build Mater, 2022, 323: 126553.
[54] [54] KRISKOVA L, PONTIKES Y, ZHANG F, et al. Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate[J]. Cem Concr Res, 2014, 55: 59-68.
[60] [60] BLANC P, VIEILLARD P, GAILHANOU H, et al. ThermoChimie database developments in the framework of cement/clay interactions[J]. Appl Geochem, 2015, 55: 95-107.
[61] [61] ABRAHAM J J, DEVERS C, TEODORIU C, et al. The need for a comprehensive cement database - A novel approach to best practices by cataloging cement properties[C]//Day 3 Wed, November 17, 2021. Abu Dhabi, UAE. SPE.
[64] [64] TKACHENKO N, TANG K, MCCARTEN M, et al. Global database of cement production assets and upstream suppliers[J]. Sci Data, 2023, 10(1): 696.
[65] [65] JAYASURIYA A, SHIBATA E S, CHEN T, et al. Development and statistical database analysis of hardened concrete properties made with recycled concrete aggregates[J]. Resour Conserv Recycl, 2021, 164: 105121.
[66] [66] WENDNER R, VOREL J, SMITH J, et al. Characterization of concrete failure behavior: A comprehensive experimental database for the calibration and validation of concrete models[J]. Mater Struct, 2015, 48(11): 3603-3626.
[67] [67] BAANT Z P, PANULA L. Practical prediction of time-dependent deformations of concrete[J]. Matriaux Constr, 1978, 11(5): 307-316.
[68] [68] BAANT Z P, KIM J K. Improved prediction model for time-dependent deformations of concrete: Part 3-Creep at drying[J]. Mater Struct, 1992, 25(1): 21-28.
[69] [69] BAANT Z P, KIM J K. Improved prediction model for time-dependent deformations of concrete: Part 2—Basic creep[J]. Mater Struct, 1991, 24(6): 409-421.
[70] [70] BAANT Z P, KIM J K. Improved prediction model for time-dependent deformations of concrete: Part 4—Temperature effects[J]. Mater Struct, 1992, 25(2): 84-94.
[71] [71] BAANT Z P, KIM J K, PANULA L. Improved prediction model for time-dependent deformations of concrete: Part 1-Shrinkage[J]. Mater Struct, 1991, 24(5): 327-345.
[72] [72] BAZANT Z P, LI G. Comprehensive database on concrete creep and shrinkage[J]. ACI Mater J, 2008, 105(6): 635-637.
[73] [73] HUBLER M H, WENDNER R, BAANT Z P. Comprehensive database for concrete creep and shrinkage: Analysis and recommendations for testing and recording[J]. ACI Mater J, 2015, 112(4): 547-558.
[77] [77] MA P F, ZHANG Y, LI K F, et al. Smart database design for concrete durability analysis - An application in the Hongkong-Zhuhai-Macau bridge[J]. Cem Concr Res, 2023, 163: 107033.
[78] [78] MCCARTHY G J, SOLEM J K, MANZ O E, et al. Use of a database of chemical, mineralogical and physical properties of North American fly ash to study the nature of fly ashand its utilization as a mineral admixture in concrete[J]. MRS Online Proc Libr, 1989, 178(1): 3-33.
[79] [79] DIAZ E I, ALLOUCHE E N. Recycling of fly ash into geopolymer concrete: Creation of a database[C]//2010 IEEE Green Technologies Conference. Grapevine, TX, USA. IEEE, 2010: 1-7.
[80] [80] NAFEES A, AMIN M N, KHAN K, et al. Modeling of mechanical properties of silica fume-based green concrete using machine learning techniques[J]. Polymers, 2021, 14(1): 30.
[81] [81] PELLEGRINO C, FALESCHINI F. Experimental database of EAF slag use in concrete[M] //Pellegrino C, Faleschini F. Sustainability Improvements in the Concrete Industry: Use of Recycled Materials for Structural Concrete Production. Cham: Springer International Publishing, 2016:141-175.
[82] [82] CORRADI M, BORRI A. A database of the structural behavior of masonry in shear[J]. Bull Earthq Eng, 2018, 16(9): 3905-3930.
[83] [83] DE ASSIS GARCIA SOBRINHO R, PIAUHY NETO F, FERNANDES H. Public database of cracks images in mortar coating with different types of surface finishes[J]. Buildings, 2023, 13(7): 1872.
[84] [84] GILLIGAN L P J, COBELLI M, TAUFOUR V, et al. A rule-free workflow for the automated generation of databases from scientific literature[J]. NPJ Comput Mater, 2023, 9: 222.
[85] [85] SWAIN M C, COLE J M. ChemDataExtractor: A toolkit for automated extraction of chemical information from the scientific literature[J]. J Chem Inf Model, 2016, 56(10): 1894-1904.
[86] [86] COURT C J, COLE J M. Auto-generated materials database of Curie and Nel temperatures via semi-supervised relationship extraction[J]. Sci Data, 2018, 5: 180111.
[87] [87] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. 2013: arXiv: 1301.3781. http://arxiv.org/abs/1301.3781
[88] [88] PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar. Stroudsburg, PA, USA: Association for Computational Linguistics, 2014: 1532-1543.
[89] [89] VASWANI A. Attention is all you need[J]. arXiv preprint arXiv: 1706.03762, 2017.
[90] [90] DEVLIN J, CHANG M, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//BURSTEIN J, DORAN C, SOLORIO T eds. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, Association for Computational Linguistics, 2019: 4171-4186.
Get Citation
Copy Citation Text
XU Chengwen, YE Jiayuan, GAO Lin, GAO Guoxian, REN Xuehong, XIA Lingfeng, WANG Lin, ZHANG Wensheng. Databases of Cementitious Materials Including Clinker and Their Applications[J]. Journal of the Chinese Ceramic Society, 2025, 53(5): 1328
Category:
Received: Sep. 13, 2024
Accepted: May. 29, 2025
Published Online: May. 29, 2025
The Author Email: