Journal of the Chinese Ceramic Society, Volume. 50, Issue 10, 2657(2022)

Effect of Molybdenum on Structure of Iron Phosphate Glasses

QIAN Min1,2, XUE Tianfeng1, LI Zhongdi3, FAN Sijun1, ZOU Zhaosong1, TANG Jingping1, RUAN Minzhi3, CHEN Shubin1, and HU Lili1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(47)

    [1] [1] QUANG R D, PETITJEAN V, HOLLEBECQUE F, et al. Vitrification of HLW produced by uranium/molybdenum fuel reprocessing in cogema’s cold crucible melter[C]//WM’03 Conference, Tucson, AZ, 2003.

    [5] [5] OJOVAN M I, LEE W E, KALMYKOV S N. Immobilisation of radioactive wastes in glass[C]// OJOVAN M I, LEE W E, KALMYKOV S N eds. An Introduction to Nuclear Waste Immobilisation. 3rd ed. Elsevier, 2019: 319-368.

    [6] [6] SZUMERA M. Molybdenum modified phosphate glasses studied by 31P MAS NMR and Raman spectroscopy[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2015, 137: 111-115.

    [7] [7] CAMARA B, LUTZE W, LUX J. An Investigation on the valency state of molybdenum in glasses with and without fission products[C]// NORTHRUP C J N ed. Scientific Basis for Nuclear Waste Management. Boston, MA: Springer, 1980.

    [8] [8] SUBCIK J, KOUDELKA L, MONER P, et al. Glass-forming ability and structure of ZnO-MoO3-P2O5 glasses[J]. J Non-Cryst Solids, 2010, 356: 2509-2516.

    [9] [9] KHATTAK G D, SALIM M A, AL-HARTHI A S, et al. Structure of molybdenum-phosphate glasses by X-ray photoelectron spectroscopy (XPS)[J]. J Non-Cryst Solids, 1997, 212: 180-191.

    [11] [11] CAURANT D, MAJRUS O. Glasses and glass-ceramics for nuclear waste immobilization[C]//POMEROY M ed. Encyclopedia of Materials: Technical Ceramics and Glasses. Elsevier, 2021: 762-789.

    [12] [12] SHORT R J, HAND R J, HYATT N C, et al. Environment and oxidation state of molybdenum in simulated high level nuclear waste glass compositions[J]. J Nucl Mater, 2005, 340(2/3): 179-186.

    [13] [13] TAURINES T, BOIZOT B. Synthesis of powellite-rich glasses for high level waste immobilization[J]. J Non-Cryst Solids, 2011, 357(14): 2723-2725.

    [14] [14] BRINKMAN K, FOX K, MARRA J, et al. Single phase melt processed powellite (Ba,Ca)MoO4 for the immobilization of Mo-rich nuclear waste[J]. J Alloys Compd, 2013, 551: 136-142.

    [15] [15] CAURANT D, MAJRUS O, FADEL E, et al. Structural investigations of borosilicate glasses containing MoO3 by MAS NMR and Raman spectroscopies[J], J Nucl Mater, 2010, 396: 94-101.

    [16] [16] MAGNIN M, SCHULLER S, MERCIER C, et al. Modification of molybdenum structural environment in borosilicate glasses with increasing content of boron and calcium oxide by 95Mo MAS NMR[J]. J Am Ceram Soc, 2011, 94(12): 4274-4282.

    [17] [17] CHOUARD N, CAURANT D, MAJERUS O, et al. Effect of MoO3, Nd2O3, and RuO2 on the crystallization of soda-lime aluminoborosilicate glasses[J]. J Mater Sci, 2015, 50: 219-241.

    [18] [18] CAURANT D, MAJRUS O, FADEL E, et al. Effect of molybdenum on the structure and on the crystallization of SiO2-Na2O-CaO-B2O3 glasses[J]. J Am Ceram Soc, 2007, 90(3): 774-783.

    [20] [20] RAY C S, SAMARANAYAKE V A, MOHAMMADKHAH A, et al. Iron phosphate glass waste forms for vitrifying Hanford AZ102 low activity waste (LAW), part I: Glass formation model[J]. J Non-Cryst Solids, 2017, 458: 149-156.

    [21] [21] FUKUI T, ISHINOMORI T, ENDO Y, et al. Iron phosphate glass as potential waste matrix for high-level radioactive waste[C]// WM‘03 Conference, Tucson, AZ, 2003.

    [22] [22] BRIDGE B, PATEL N D. The elastic constants and structure of the vitreous system Mo-P-O[J]. J Mater Sci, 1986, 21: 1187-1205.

    [23] [23] BAI J, HSU J, SANDINENI P, et al. The structure and properties of cesium loaded Mo-Fe-phosphate glasses[J]. J Non-Cryst Solids, 2019, 510: 121-129.

    [24] [24] MOGUS-MILANKOVIC A, SANTIC A, GAJOVIC A, et al. Spectroscopic investigation of MoO3-Fe2O3-P2O5 and SrO-Fe2O3-P2O5 glasses. Part I[J]. J Non-Cryst Solids, 2003, 325(1-3): 76-84.

    [25] [25] WANG Y, WANG F, ZHOU J, et al. Effect of molybdenum on structural features and thermal properties of iron phosphate glasses and boron-doped iron phosphate glasses[J]. J Alloys Compd, 2020, 826: 154225.

    [26] [26] BINGHAM P A, HAND R J, HANNANT O M, et al. Effects of modifier additions on the thermal properties, chemical durability, oxidation state and structure of iron phosphate glasses[J]. J Non-Cryst Solids, 2009, 355: 1526-1538.

    [27] [27] BROW R K, KIRKPATRICK R J, TURNER G L. Nature of alumina in phosphate glass: II, structure of sodium aluminophosphate glass[J]. J Am Ceram Soc, 1993, 76(4): 919-928.

    [28] [28] BROW R K. Nature of alumina in phosphate glass: I, properties of sodium aluminophosphate glass[J]. J Am Ceram Soc, 1993, 76(4): 913-918.

    [29] [29] MOGUS-MILANKOVIC A, SANTIC A, PAVIC L. Glasses: Phosphates[C]// POMEROY M ed. Encyclopedia of Materials: Technical Ceramics and Glasses. Elsevier, 2021: 580-590.

    [30] [30] QIAN M, XUE T, FAN S, et al. Influence of ZrO2 content on the chemical durability and structure of P2O5-Fe2O3-Al2O3-Na2O-ZrO2 glass ceramics[J]. J Non-Cryst Solids, 2022, 582: 121446.

    [31] [31] ZHANG L Y, LI H, HU L L. Statistical structure analysis of GeO2 modified Yb3+: Phosphate glasses based on Raman and FTIR study[J]. J Alloys Compd, 2017, 698: 103-113.

    [32] [32] YADAV A K, SINGH P. A review of the structures of oxide glasses by Raman spectroscopy[J]. RSC Adv, 2015, 5: 67583-67609.

    [33] [33] KUCZEK J, JELEN P, STOCH P, et al. Raman and Mssbauer studies of iron phosphate-silicate glasses[J]. J Mol Struct, 2018, 1170: 82-89.

    [34] [34] STEFANOVSKY S V, STEFANOVSKY O I, KADYKO M I. FTIR and Raman spectroscopic study of sodium aluminophosphate and sodium aluminum-iron phosphate glasses containing uranium oxides[J]. J Non-Cryst Solids, 2016, 443: 192-198.

    [35] [35] CHEN K, XIE S, IGLESIA E, et al. Structure and properties of zirconia-supported molybdenum oxide catalysts for oxidative dehydrogenation of propane[J]. J Catal, 2000, 189: 421-430.

    [36] [36] PERSHINA S V, ANTONOV B D, LEONIDOV I I. Effect of MoO3 on structural, thermal and transport properties of lithium phosphate glasses[J]. J Non-Cryst Solids, 2021, 569: 120944.

    [37] [37] BAI J, BROW R K, KIM C-W, et al. Redox effects on the structure and properties of Na-Mo-Fe-phosphate glasses[J]. J Non-Cryst Solids, 2021, 557: 120573.

    [38] [38] MYSEN B O, FINGER L W, VIRGO D, et al. Curve-fitting of Raman spectra of silicate glasses[J]. Am Mineral, 1982, 67(7/8): 686-695.

    [39] [39] MA L, BROW R K, CHOUDHURY A. Structural study of Na2O-FeO-Fe2O3-P2O5 glasses by Raman and Mssbauer spectroscopy[J]. J Non-Cryst Solids, 2014, 402: 64-73.

    [40] [40] GRUENERT W, STAKHEEV A Y, FELDHAUS R, et al. Analysis of molybdenum(3d) XPS spectra of supported molybdenum catalysts: An alternative approach[J]. J Phys Chem, 1991, 95(3): 1323-1328.

    [41] [41] ZATSEPIN D A, BOUKHVALOV D W, GAVRILOVE N V, et al. XPS and DFT analyses of the Pb 4f-Zn 3s and Pb 5d-O 2s overlapped ambiguity contributions to the final electronic structure of bulk and thin-film Pb-modulated zincite[J]. Appl Surf Sci, 2017, 405: 129-136.

    [42] [42] KOCHUR A G, IVANOVA T M, SHCHUKAREV A V, et al. X-ray photoelectron Fe 3s and Fe 3p spectra of polynuclear trimethylacetate iron complexes[J]. J Electron Spectros Relat Phenomena, 2010, 180(1-3): 21-26.

    [43] [43] MEKKI A, HOLLAND D, MCCONVILLE C F, et al. An XPS study of iron sodium silicate glass surfaces[J]. J Non-Cryst Solids, 1996, 208(3): 267-276.

    [44] [44] CRIST B V. Handbook of Monochromatic XPS Spectra[M]. 1st ed. Wiley, 2000.

    [45] [45] MASLAKOV K I, TETERIN Y A, STEFANOVSKY S V, et al. XPS study of uranium-containing sodium-aluminum-iron-phosphate glasses[J]. J Alloys Compd, 2017, 712: 36-43.

    [46] [46] GISELA C, LUQUE J L F. Electrocatalysis of oxygen reduction at electrodeposited molybdenum phosphate-based films[J]. J Power Sources, 2012, 203: 57-64.

    [47] [47] MA Y, LI Y, WANG E, et al. Synthesis, characterization and crystal structure of a new cobalt phosphomolybdate that contains [(Mo16O32)Co16(H2O)18(PO4)6(HPO4)18] wheels[J]. Transit Metal Chem, 2006, 31(2): 262-267.

    [48] [48] BACH H, KRAUSE D. Analysis of the composition and structure of glass and glass ceramics[M]. Springer, 1999.

    [49] [49] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl Surf Sci, 2008, 254(8): 2441-2449.

    [50] [50] WILLIAMS G L. 57Fe Mossbauer studies of phosphate-based glass systems[D]. United Kingdom: Sheffield Hallam University, 1990.

    [51] [51] MARASINGHE G K, KARABULUT M, RAY C S, et al. Structural features of iron phosphate glasses[J]. J Non-Cryst Solids, 1997(222): 144-152.

    [52] [52] BIH L, ABBAS L, NADIRI A, et al. Investigations of molybdenum redox phenomenon in Li2O-MoO3-P2O5 phosphate glasses[J]. J Mol Struct, 2008, 872(1): 1-9.

    Tools

    Get Citation

    Copy Citation Text

    QIAN Min, XUE Tianfeng, LI Zhongdi, FAN Sijun, ZOU Zhaosong, TANG Jingping, RUAN Minzhi, CHEN Shubin, HU Lili. Effect of Molybdenum on Structure of Iron Phosphate Glasses[J]. Journal of the Chinese Ceramic Society, 2022, 50(10): 2657

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 29, 2022

    Accepted: --

    Published Online: Jan. 22, 2023

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20220222

    Topics