Laser & Optoelectronics Progress, Volume. 60, Issue 6, 0610016(2023)
End-to-End Phase Reconstruction of Digital Holography Based on Improved Residual Unet
[1] Javidi B, Carnicer A, Anand A et al. Roadmap on digital holography[J]. Optics Express, 29, 35078-35118(2021).
[2] Wen K, Ma Y, Zhang M L et al. Quantitative phase microscopy with high stability[J]. Laser & Optoelectronics Progress, 57, 200001(2020).
[3] Kim Y, Park S, Baek H et al. Voxel characteristic estimation of integral imaging display system using self-interference incoherent digital holography[J]. Optics Express, 30, 902-913(2022).
[4] Merola F, Memmolo P, Miccio L et al. Tomographic flow cytometry by digital holography[J]. Light: Science & Applications, 6, e16241(2017).
[5] Zeng T J, Zhu Y M, Lam E Y. Deep learning for digital holography: a review[J]. Optics Express, 29, 40572-40593(2021).
[6] Bianco V, Mandracchia B, Marchesano V et al. Endowing a plain fluidic chip with micro-optics: a holographic microscope slide[J]. Light: Science & Applications, 6, e17055(2017).
[7] Wu Y C, Luo Y L, Chaudhari G et al. Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram[J]. Light: Science & Applications, 8, 25(2019).
[8] Rivenson Y, Zhang Y B, Günaydın H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 7, 17141(2018).
[9] Wu Y C, Rivenson Y, Zhang Y B et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery[J]. Optica, 5, 704-710(2018).
[10] Liu T R, de Haan K, Rivenson Y et al. Deep learning-based super-resolution in coherent imaging systems[J]. Scientific Reports, 9, 3926(2019).
[11] Luo Z X, Yurt A, Stahl R et al. Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks[J]. Optics Express, 27, 13581-13595(2019).
[12] Rivenson Y, Wu Y C, Ozcan A. Deep learning in holography and coherent imaging[J]. Light: Science & Applications, 8, 85(2019).
[13] Go T, Lee S, You D et al. Deep learning-based hologram generation using a white light source[J]. Scientific Reports, 10, 8977(2020).
[14] Wu Y F, Wu J C, Jin S Z et al. Dense-U-net: dense encoder-decoder network for holographic imaging of 3D particle fields[J]. Optics Communications, 493, 126970(2021).
[15] Chen N, Wang C L, Heidrich W. Holographic 3D particle imaging with model-based deep network[J]. IEEE Transactions on Computational Imaging, 7, 288-296(2021).
[16] Wu J C, Liu K X, Sui X M et al. High-speed computer-generated holography using an autoencoder-based deep neural network[J]. Optics Letters, 46, 2908-2911(2021).
[17] Sun X, Han C. Three-dimensional phase-only holographic display based on deep learning and angular-spectrum layer-oriented[J]. Laser & Optoelectronics Progress, 59, 0409001(2022).
[18] Zhou Z W, Siddiquee M M R, Tajbakhsh N et al. UNet: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 39, 1856-1867(2020).
[19] Li X H, Du Z S, Huang Y Y et al. A deep translation (GAN) based change detection network for optical and SAR remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 179, 14-34(2021).
[20] Wang H Y, Liu Z Q, Liao W et al. Comparison of four phases unwrapping algorithm based on method of minimum norm[J]. Chinese Journal of Lasers, 41, 0209016(2014).
[21] Dong Z, Wang W J, Wang H Y et al. Improved phase compensation method based on phase vibration minimization[J]. Chinese Journal of Lasers, 48, 2409001(2021).
[22] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).
[23] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[24] Zhang W Q, Feng J C, Li Z et al. Reconstruction for Cherenkov-excited luminescence scanned tomography based on Unet network[J]. Chinese Journal of Lasers, 48, 1707001(2021).
[25] Yan M J, Su X Y. Hyperspectral image classification based on three-dimensional dilated convolutional residual neural network[J]. Acta Optica Sinica, 40, 1628002(2020).
[26] Zhu J P, Wang R K, Duan Z J et al. Three-dimensional face modeling based on multi-scale attention phase unwrapping[J]. Acta Optica Sinica, 42, 0112005(2022).
[27] Hu J, Shen L, Albanie S et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 2011-2023(2020).
[28] Xu K, Qin M H, Sun F et al. Learning in the frequency domain[C], 1737-1746(2020).
[29] Qin Z Q, Zhang P Y, Wu F et al. FcaNet: frequency channel attention networks[C], 763-772(2021).
Get Citation
Copy Citation Text
Kunge Li, Huaying Wang, Xu Liu, Jieyu Wang, Wenjian Wang, Liu Yang. End-to-End Phase Reconstruction of Digital Holography Based on Improved Residual Unet[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0610016
Category: Image Processing
Received: Mar. 3, 2022
Accepted: Mar. 30, 2022
Published Online: Mar. 7, 2023
The Author Email: Xu Liu (liuxu@hebeu.edu.cn)