Journal of Inorganic Materials, Volume. 39, Issue 11, 1189(2024)
[2] TUCKER M C. Progress in metal-supported solid oxide fuel cells: a review[J]. Journal of Power Sources, 4570(2010).
[3] SAIED M, AHMED K, AHMED M et al. Investigations of solid oxide fuel cells with functionally graded electrodes for high performance and safe thermal stress[J]. International Journal of Hydrogen Energy, 15887(2017).
[4] OSMAN S, AHMED K, NEMATTALLA M et al. Performance and thermal stresses in functionally graded anode-supported honeycomb solid-oxide fuel cells[J]. International Journal of Hydrogen Energy, 33010(2021).
[5] WANG Z, ZHANG N, QIAO J et al. Improved SOFC performance with continuously graded anode functional layer[J]. Electrochemistry Communications, 1120(2009).
[7] SONG M, DU C, WANG B et al. Thermal stress of solid oxide fuel cell with gradient porosity anode[J]. Journal of the Chinese Ceramic Society, 1233(2022).
[8] ZHANG X, YAN Z, ZHOU Y et al. Residual thermal stress and failure probability analysis of solid oxide fuel cell with gradient anode[J]. Journal of the Chinese Ceramic Society, 1223(2022).
[9] YAN Z, HE A, HARA S et al. Design and optimization of functionally graded electrodes for solid oxide fuel cells (SOFCs) by mesoscale modeling[J]. International Journal of Hydrogen Energy, 16610(2022).
[10] RADOVIC M, LARA-CURZIO E. Elastic properties of nickel- based anodes for solid oxide fuel cells as a function of the fraction of reduced NiO[J]. Journal of the American Ceramic Society, 2242(2004).
[11] KISHIMOTO M, IWAI H, SAITO M et al. Quantitative evaluation of solid oxide fuel cell porous anode microstructure based on focused ion beam and scanning electron microscope technique and prediction of anode overpotentials[J]. Journal of Power Sources, 4555(2011).
[12] HSIEH C L, TUAN W H. Elastic and thermal expansion behavior of two-phase composites[J]. Materials Science and Engineering: A, 349(2006).
[13] MORI M, YAMAMOTO T, ITOH H et al. Thermal expansion of nickel- zirconia anodes in solid oxide fuel cells during fabrication and operation[J]. Journal of the Electrochemical Society, 1374(1998).
[14] JOHNSON J, QU J. Effective modulus and coefficient of thermal expansion of Ni-YSZ porous cermets[J]. Journal of Power Sources, 85(2008).
[15] MORI M, HIEI Y, SAMMES N M et al. Thermal-expansion behaviors and mechanisms for Ca- or Sr-doped lanthanum manganite perovskites under oxidizing atmospheres[J]. Journal of the Electrochemical Society, 1295(2000).
[16] GRECO F, FRANDSEN H L, NAKAJO A et al. Modelling the impact of creep on the probability of failure of a solid oxide fuel cell stack[J]. Journal of the European Ceramic Society, 2695(2014).
[17] SUH I K, OHTA H, WASEDA Y. High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction[J]. Journal of Materials Science, 757(1988).
[18] LI Q, LI G. Modeling of the solid oxide fuel cell anode based on a new analytical model using nonlinear Butler-Volmer expression[J]. Ionics, 3063(2021).
[19] YAKABE H, BABA Y, SAKURAI T et al. Evaluation of residual stresses in a SOFC stack[J]. Journal of Power Sources, 278(2004).
[20] JUNG H Y, KIM W S, CHOI S H et al. Effect of cathode current- collecting layer on unit-cell performance of anode-supported solid oxide fuel cells[J]. Journal of Power Sources, 145(2006).
Get Citation
Copy Citation Text
Dingxi XUE, Bingyao YI, Guojun LI, Shuai MA, Keqin LIU.
Category:
Received: Mar. 13, 2024
Accepted: --
Published Online: Jan. 21, 2025
The Author Email: Guojun LI (liguojun@xjtu.edu.cn)