Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 11, 1497(2021)

Multi-scale image semantic segmentation based on ASPP and improved HRNet

SHI Jian-feng1、*, GAO Zhi-ming2, and WANG A-chuan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(14)

    [4] [4] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234-241.

    [5] [5] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.

    [6] [6] ZHENG S, JAYASUMANA S, ROMERA-PAREDES B, et al. Conditional random fields as recurrent neural networks [C]//IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1529-1537.

    [7] [7] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 5686-5696.

    [8] [8] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.

    [9] [9] WU H S, LIANG C X, LIU M S, et al. Optimized HRNet for image semantic segmentation [J]. Expert Systems with Applications, 2021, 174: 114532.

    [10] [10] SUN K, ZHAO Y, JIANG B R, et al. High-resolution representations for labeling pixels and regions [J]. arXiv: 1904.04514, 2019: 1-4.

    [11] [11] CHOLLET F. Xception: deep learning with depthwise separable convolutions [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 1800-1807.

    [12] [12] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2818-2826.

    [13] [13] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [J]. arXiv: 1502.03167, 2015: 2-4.

    [14] [14] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]//15th European Conference on Computer Vision. Munich: Springer, 2018: 833-851.

    [15] [15] WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation [C]//2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe: IEEE, 2018: 1451-1460.

    [16] [16] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 3213-3223.

    Tools

    Get Citation

    Copy Citation Text

    SHI Jian-feng, GAO Zhi-ming, WANG A-chuan. Multi-scale image semantic segmentation based on ASPP and improved HRNet[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(11): 1497

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 8, 2021

    Accepted: --

    Published Online: Dec. 1, 2021

    The Author Email: SHI Jian-feng (2020111879@nefu.edu.cn)

    DOI:10.37188/cjlcd.2021-0093

    Topics