Acta Optica Sinica, Volume. 41, Issue 1, 0112001(2021)
Progress and Prospect of Optical Freeform Surface Measurement
[2] Thompson K P, Rolland J P. Freeform optical surfaces: a revolution in imaging optical design[J]. Optics & Photonics News, 23, 30-35(2012).
[4] Wu R M, Ding Z H, Yang L et al. Precise light control in highly tilted geometry by freeform illumination optics[J]. Optics Letters, 44, 2887-2890(2019).
[5] Zhu Z B, Ma D L, Hu Q M et al. Catadioptric freeform optical system design for LED off-axis road illumination applications[J]. Optics Express, 26, A54-A65(2018).
[12] Bian Y X, Li H F, Wang Y F et al. Method to design two aspheric surfaces for a wide field of view imaging system with low distortion[J]. Applied Optics, 54, 8241-8247(2015).
[15] Yu B H. Research on key technology of ultra-short-focus projection objective system based on freeform surfaces[D]. Beijing: University of Chinese Academy of Sciences(2019).
[16] Nie Y F, Mohedano R, Benitez P et al. Multifield direct design method for ultrashort throw ratio projection optics with two tailored mirrors[J]. Applied Optics, 55, 3794-3800(2016).
[17] Cayrel M. E-ELT optomechanics: overview[J]. Proceedings of SPIE, 8444, 84441X(2012).
[18] Howard J M, Wolbach S. Improving the performance of three-mirror imaging systems with Freeform Optics. [C]∥Renewable Energy and the Environment, Tucson, Arizona. Washington, D. C.: OSA, FT2B, 6(2013).
[19] Meng Q Y, Wang H Y, Wang K J et al. Off-axis three-mirror freeform telescope with a large linear field of view based on an integration mirror[J]. Applied Optics, 55, 8962-8970(2016).
[20] Meng Q Y, Wang H Y, Liang W J et al. Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface freeform and field of view[J]. Applied Optics, 58, 609-615(2019).
[23] Werner K. XENOS-the new standard[J]. Advanced Technologies in Mechanics, 1, 28-31(2014).
[24] Spitz S N. Requicha A A G. Multiple-goals path planning for coordinate measuring machines. [C]∥Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings, April 24-28, 2000, San Francisco, CA, USA. New York: IEEE, 2322-2327(2000).
[25] Spyridi A J. Requicha A A G. Automatic programming of coordinate measuring machines. [C]∥Proceedings of the 1994 IEEE International Conference on Robotics and Automation, May 8-13, 1994, San Diego, CA, USA. New York: IEEE, 1107-1112(1994).
[27] Gao H, Zhang X, Fang F. Axicon profile metrology using contact stylus method[J]. International Journal of Nanomanufacturing, 14, 177-191(2018).
[30] Henselmans R, Cacace L A. Kramer G F Y, et al. The NANOMEFOS non-contact measurement machine for freeform optics[J]. Precision Engineering, 35, 607-624(2011).
[31] Bos A, Henselmans R. Rosielle P C J N, et al. Nanometre-accurate form measurement machine for E-ELT M1 segments[J]. Precision Engineering, 40, 14-25(2015).
[32] Anderson D S, Burge J H. Swing-arm profilometry of aspherics[J]. Proceedings of SPIE, 2536, 169-179(1995).
[33] Su P, Oh C J, Parks R E et al. Swing-arm optical CMM for aspherics[J]. Proceedings of SPIE, 7426, 74260J(2009).
[37] Jing H W, Lin C Q, Fan B et al. Measurement of an off-axis parabolic mirror using coordinates measurement machine and swing arm profilometer during the grinding process[J]. Proceedings of SPIE, 8415, 84150K(2012).
[39] Xiong L, Luo X, Liu Z Y et al. Swing arm profilometer: analytical solutions of misalignment errors for testing axisymmetric optics[J]. Optical Engineering, 55, 074108(2016).
[41] Xiong L. Research on swing-arm profilometer test for large-aperture complex optical surface[D]. Beijing: University of Chinese Academy of Sciences(2017).
[45] Zhang J P. Research on testing aspherical surface using Shack-Hartmann wavefront sensor[D]. Beijing: University of Chinese Academy of Sciences(2012).
[55] a neural network. Complex object 3D measurement based on phase-shifting,[J]. Optics Communications, 282, 2699-2706(2009).
[56] Häusler G, Faber C, Olesch E. Deflectometry vs. interferometry[J]. Proceedings of SPIE, 8788, 87881C(2013).
[57] Su P, Wang S S, Khreishi M et al. SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments[J]. Proceedings of SPIE, 8450, 84500W(2012).
[58] Tang Y, Su X Y, Liu Y K et al. 3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry[J]. Optics Express, 16, 15090-15096(2008).
[59] Tang Y, Su X Y, Wu F et al. A novel phase measuring deflectometry for aspheric mirror test[J]. Optics Express, 17, 19778-19784(2009).
[60] Zhao W C, Su X Y, Liu Y K et al. Testing an aspheric mirror based on phase measuring deflectometry[J]. Optical Engineering, 48, 103603(2009).
[64] Yuan T. Study on fringe-reflection optical surface shape measurement technology for large aspheric mirror[D]. Beijing: University of Chinese Academy of Sciences(2016).
[65] MacGovern A J, Wyant J C. Computer generated holograms for testing optical elements[J]. Applied Optics, 10, 619-624(1971).
[72] Chaudhuri R, Papa J C, Rolland J P. System design of a single-shot reconfigurable null test using a spatial light modulator for freeform metrology[J]. Optics Letters, 44, 2000-2003(2019).
[73] Hao Q, Wang S P, Hu Y. Design method of a liquid crystal based computer-generated hologram for freeform surface measurement. [C]∥2017 22nd Microoptics Conference (MOC), November 19-22, 2017, Tokyo, Japan. New York: IEEE, 244-245(2017).
[74] Hu Y, Wang S P, Wang Z et al. Liquid crystal hologram for cylinder lens measurement[J]. Proceedings of SPIE, 1118, 111850W(2019).
[76] Ma J, Pruss C, Häfner M et al. Systematic analysis of the measurement of cone angles using high line density computer-generated holograms[J]. Optical engineering, 50, 055801(2011).
[82] He Y W, Hou X, Wu F et al. Analysis of spurious diffraction orders of computer-generated hologram in symmetric aspheric metrology[J]. Optics Express, 25, 20556-20572(2017).
[83] Liu H L, Zhu Q D, Hao Q et al. Design of novel part-compensating lens used in aspheric testing[J]. Proceedings of SPIE, 5253, 480-484(2003).
[85] Liu D, Yang Y Y, Luo Y J et al. Non-null interferometric aspheric testing with partial null lens and reverse optimization[J]. Proceedings of SPIE, 7426, 74260M(2009).
[90] Zhang L, Li C, Huang X L et al. Compact adaptive interferometer for unknown freeform surfaces with large departure[J]. Optics Express, 28, 1897-1913(2020).
[96] Shi T, Liu D, Zhou Y H et al. Practical retrace error correction in non-null aspheric testing: a comparison[J]. Optics Communications, 383, 378-385(2017).
[101] Chow W W, Lawrence G N. Method for subaperture testing interferogram reduction[J]. Optics Letters, 8, 468-470(1983).
[102] Kuechel M F. Interferometric measurement of rotationally symmetric aspheric surfaces[J]. Proceedings of SPIE, 1031, 103160Q(2007).
[103] Hou X, Wu F, Yang L et al. Full-aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and a matrix method for testing large aspheric surfaces[J]. Applied Optics, 45, 3442-3455(2006).
[104] Hou X, Wu F, Yang L et al. Experimental study on measurement of aspheric surface shape with complementary annular subaperture interferometric method[J]. Optics Express, 15, 12890-12899(2007).
[105] Chen S Y, Li S Y, Dai Y F et al. Experimental study on subaperture testing with iterative stitching algorithm[J]. Optics Express, 16, 4760-4765(2008).
[109] Fleig J F, Murphy P E. Measuring a nanometer-precision asphere with subaperture stitching interferometry. [C]∥Frontiers in Optics, Rochester, New York. Washington, D. C.: OSA, OFTuA6(2006).
[113] Murphy P, Supranowitz C. Freeform testability considerations for subaperture stitching interferometry[J]. Proceedings of SPIE, 11175, 111750Z(2019).
[116] Chen S Y, Xue S, Dai Y F et al. Subaperture stitching test of large steep convex spheres[J]. Optics Express, 23, 29047-29058(2015).
[118] Liu D, Zhou Y H, Bai J et al. Aspheric and free-form surfaces test with non-null sub-aperture stitching[J]. Proceedings of SPIE, 1002, 100210N(2016).
[122] Garbusi E, Pruss C, Osten W. Interferometer for precise and flexible asphere testing[J]. Optics Letters, 33, 2973-2975(2008).
[124] Baer G, Garbusi E, Lyda W et al. Automated surface positioning for a non-null test interferometer[J]. Optical engineering, 49, 095602(2010).
[127] Fortmeier I, Stavridis M, Wiegmann A et al. Evaluation of absolute form measurements using a tilted-wave interferometer[J]. Optics Express, 24, 3393-3404(2016).
[131] Shen H. Research on key techniques of tilted wave interferometer used in the measurement of freeform surfaces[D]. Nanjing: Nanjing University of Science and Technology(2014).
[134] Li J, Shen H, Zhu R H et al. Interferometry with flexible point source array for measuring complex freeform surface and its design algorithm[J]. Optics Communications, 417, 67-75(2018).
[136] Lu Q. Point source generator for dynamic generation of ideal interference point source array[D]. Nanjing: Nanjing University of Science and Technology(2017).
[139] Wang J S. Design and development of common-path interferometer for complex surface based on optical fiber array[D]. Nanjing: Nanjing University of Science and Technology(2019).
Get Citation
Copy Citation Text
Rihong Zhu, Yue Sun, Hua Shen. Progress and Prospect of Optical Freeform Surface Measurement[J]. Acta Optica Sinica, 2021, 41(1): 0112001
Category: Instrumentation, Measurement and Metrology
Received: May. 15, 2020
Accepted: Jul. 6, 2020
Published Online: Aug. 5, 2020
The Author Email: Zhu Rihong (zhurihong@njust.edu.cn), Shen Hua (edward_bayun@163.com)