Chinese Journal of Lasers, Volume. 47, Issue 7, 701008(2020)
Lasers Based on Two-Dimensional Layered Materials
[1] Hall R N, Fenner G E, Kingsley J D et al. Coherent light emission from GaAs junctions[J]. Physical Review Letters, 9, 366-368(1962).
[2] Gather M C, Yun S H. Single-cell biological lasers[J]. Nature Photonics, 5, 406-410(2011).
[3] Du W N, Zhang S, Shi J et al. Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Perot cavity[J]. ACS Photonics, 5, 2051-2059(2018).
[4] Zhong Y G, Wei Q, Liu Z et al. Low threshold Fabry-Perot mode lasing from lead iodide trapezoidal nanoplatelets[J]. Small, 14, 1801938(2018).
[5] Mi Y, Zhong Y G, Zhang Q et al. Continuous-wave pumped perovskite lasers[J]. Advanced Optical Materials, 7, 1900544(2019).
[6] Leuthold J, Hoessbacher C, Muehlbrandt S et al. Plasmonic communications: light on a wire[J]. Optics and Photonics News, 24, 28-35(2013).
[8] Chen J, Du W N, Shi J W et al. Perovskite quantum dot lasers[J]. InfoMat, 2, 170-183(2020).
[9] Liang D, Bowers J E. Recent progress in lasers on silicon[J]. Nature Photonics, 4, 511-517(2010).
[10] Howlader M M R, Watanabe T, Suga T. Investigation of the bonding strength and interface current of p-Si/n-GaAs wafers bonded by surface activated bonding at room temperature[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 19, 2114-2118(2001).
[11] Zhou Y C, Zhu Z H, Crouse D et al. Electrical properties of wafer-bonded GaAs/Si heterojunctions[J]. Applied Physics Letters, 73, 2337-2339(1998).
[13] Chang Y H, Zhang W J, Zhu Y H et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection[J]. ACS Nano, 8, 8582-8590(2014).
[14] Dumcenco D, Ovchinnikov D, Marinov K et al. Large-area epitaxial monolayer MoS2[J]. ACS Nano, 9, 4611-4620(2015).
[15] Huang J K, Pu J, Hsu C L et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications[J]. ACS Nano, 8, 923-930(2014).
[16] Lee Y H, Zhang X Q, Zhang W J et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 24, 2320-2325(2012).
[17] Ji Q Q, Zhang Y F, Gao T et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence[J]. Nano Letters, 13, 3870-3877(2013).
[18] Zhang Y S, Shi J P, Han G F et al. Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution[J]. Nano Research, 8, 2881-2890(2015).
[19] Gao Y, Liu Z B, Sun D M et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils[J]. Nature Communications, 6, 8569(2015).
[20] Yang P F, Zou X L, Zhang Z P et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass[J]. Nature Communications, 9, 979(2018).
[21] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).
[22] Novoselov K S, Jiang D, Schedin F et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451-10453(2005).
[23] Morozov S V, Novoselov K S, Katsnelson M I et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 100, 016602(2008).
[25] Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 110, 132-145(2010).
[26] Kim K, Choi J Y, Kim T et al. A role for graphene in silicon-based semiconductor devices[J]. Nature, 479, 338-344(2011).
[27] Pan A L, Zhang K, Liu X F et al. Focus on 2D material nanophotonics[J]. Nanotechnology, 30, 030201(2019).
[28] Splendiani A, Sun L, Zhang Y B et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 10, 1271-1275(2010).
[29] Cheiwchanchamnangij T. Lambrecht W R L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2[J]. Physical Review B, 85, 205302(2012).
[30] Ramasubramaniam A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides[J]. Physical Review B, 86, 115409(2012).
[31] Qiu D Y, da Jornada F H, Louie S G. Optical spectrum of MoS2: many-body effects and diversity of exciton states[J]. Physical Review Letters, 111, 216805(2013).
[32] Chernikov A, Berkelbach T C, Hill H M et al. Exciton binding energy and Nonhydrogenic Rydberg Series in monolayer WS2[J]. Physical Review Letters, 113, 076802(2014).
[33] He K L, Kumar N, Zhao L et al. Tightly bound excitons in monolayer WSe2[J]. Physical Review Letters, 113, 026803(2014).
[34] Wang G, Marie X, Gerber I et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances[J]. Physical Review Letters, 114, 097403(2015).
[36] Lien D H, Amani M, Desai S B et al. Large-area and bright pulsed electroluminescence in monolayer semiconductors[J]. Nature Communications, 9, 1229(2018).
[38] Xiao D, Liu G B, Feng W X et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides[J]. Physical Review Letters, 108, 196802(2012).
[40] Cao T, Wang G, Han W P et al. Valley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nature Communications, 3, 887(2012).
[42] Schaibley J R, Yu H Y, Clark G et al. Valleytronics in 2D materials[J]. Nature Reviews Materials, 1, 16055(2016).
[43] Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 499, 419-425(2013).
[45] Ceballos F, Bellus M Z, Chiu H Y et al. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure[J]. ACS Nano, 8, 12717-12724(2014).
[47] Rivera P, Schaibley J R, Jones A M et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures[J]. Nature Communications, 6, 6242(2015).
[48] Mak K F, Shan J. Opportunities and challenges of interlayer exciton control and manipulation[J]. Nature Nanotechnology, 13, 974-976(2018).
[49] Binder J, Howarth J, Withers F et al. Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures[J]. Nature Communications, 10, 2335(2019).
[50] Mak K F, Lee C, Hone J et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 105, 136805(2010).
[51] Bernardi M, Palummo M, Grossman J C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials[J]. Nano Letters, 13, 3664-3670(2013).
[54] Bao W Z, Cai X H, Kim D et al. High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects[J]. Applied Physics Letters, 102, 042104(2013).
[58] Perea-López N, Lin Z, Pradhan N R et al. CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage[J]. 2D Materials, 1, 011004(2014).
[59] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).
[60] Yang S C, Wang Y, Sun H D. Advances and prospects for whispering gallery mode microcavities[J]. Advanced Optical Materials, 3, 1136-1162(2015).
[61] Heylman K D, Knapper K A, Horak E H et al. Optical microresonators for sensing and transduction: a materials perspective[J]. Advanced Materials, 29, 1700037(2017).
[63] Garrett C G B, Kaiser W, Bond W L. Stimulated emission into optical whispering modes of spheres[J]. Physical Review, 124, 1807-1809(1961).
[64] Tamboli A C, Haberer E D, Sharma R et al. Room-temperature continuous-wave lasing in GaN/InGaN microdisks[J]. Nature Photonics, 1, 61-64(2007).
[65] Chao C Y, Guo L J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance[J]. Applied Physics Letters, 83, 1527-1529(2003).
[66] Du W N, Zhang S, Wu Z Y et al. Unveiling lasing mechanism in CsPbBr3 microsphere cavities[J]. Nanoscale, 11, 3145-3153(2019).
[68] Mi Y, Jin B, Zhao L Y et al. High-quality hexagonal nonlayered CdS nanoplatelets for low-threshold whispering-gallery-mode lasing[J]. Small, 15, 1901364(2019).
[69] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58, 2059-2062(1987).
[70] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 58, 2486-2489(1987).
[72] Liu X Z, Galfsky T, Sun Z et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 9, 30-34(2015).
[73] Dufferwiel S, Schwarz S, Withers F et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities[J]. Nature Communications, 6, 8579(2015).
[74] Wu S F, Buckley S, Jones A M et al. Control of two-dimensional excitonic light emission via photonic crystal[J]. 2D Materials, 1, 011001(2014).
[75] Gan X T, Gao Y D, Mak K et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity[J]. Applied Physics Letters, 103, 181119(2013).
[77] Wu S F, Buckley S, Schaibley J R et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds[J]. Nature, 520, 69-72(2015).
[78] Ye Y, Wong Z J, Lu X F et al. Monolayer excitonic laser[J]. Nature Photonics, 9, 733-737(2015).
[79] Salehzadeh O, Djavid M, Tran N H et al. Optically pumped two-dimensional MoS2 lasers operating at room-temperature[J]. Nano Letters, 15, 5302-5306(2015).
[80] Shang J Z, Cong C X, Wang Z L et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers[J]. Nature Communications, 8, 543(2017).
[81] Li Y Z, Zhang J X, Huang D D et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity[J]. Nature Nanotechnology, 12, 987-992(2017).
[82] Fang H L, Liu J, Li H J et al. 1305 nm few-layer MoTe2-on-silicon laser-like emission[J]. Laser & Photonics Reviews, 12, 1800015(2018).
[83] Fang H L, Liu J, Lin Q L et al. Laser-like emission from a sandwiched MoTe2 heterostructure on a silicon single-mode resonator[J]. Advanced Optical Materials, 7, 1900538(2019).
[84] Zhao L Y, Shang Q Y, Gao Y et al. High-temperature continuous-wave pumped lasing from large-area monolayer semiconductors grown by chemical vapor deposition[J]. ACS Nano, 12, 9390-9396(2018).
[85] Liu Y D, Fang H L, Rasmita A et al. 5(4): eaav4506(2019).
[86] Paik E Y, Zhang L, Burg G W et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures[J]. Nature, 576, 80-84(2019).
[88] Withers F, del Pozo-Zamudio O, Mishchenko A et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures[J]. Nature Materials, 14, 301-306(2015).
[89] Liu C H, Clark G, Fryett T et al. Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode[J]. Nano Letters, 17, 200-205(2017).
[90] Bhattacharya P, Xiao B, Das A et al. Solid state electrically injected exciton-polariton laser[J]. Physical Review Letters, 110, 206403(2013).
[91] Ohtani K, Meng B, Franckié M et al. 5(7): eaau1632(2019).
[92] Bhattacharya P, Frost T, Deshpande S et al. Room temperature electrically injected polariton laser[J]. Physical Review Letters, 112, 236802(2014).
[93] Zhang Q. LiuX F. Exciton-polaritons in semiconductors[J]. Journal of Semiconductors, 40, 090401(2019).
Get Citation
Copy Citation Text
Wang Qi, Zhong Yangguang, Zhao Liyun, Shi Jianwei, Zhang Shuai, Wang Gongtang, Zhang Qing, Liu Xinfeng. Lasers Based on Two-Dimensional Layered Materials[J]. Chinese Journal of Lasers, 2020, 47(7): 701008
Special Issue:
Received: Jan. 19, 2020
Accepted: --
Published Online: Jul. 10, 2020
The Author Email: