Chinese Journal of Lasers, Volume. 47, Issue 7, 701008(2020)

Lasers Based on Two-Dimensional Layered Materials

Wang Qi1,2, Zhong Yangguang2, Zhao Liyun3, Shi Jianwei2, Zhang Shuai2, Wang Gongtang1, Zhang Qing3,4, and Liu Xinfeng2,5
Author Affiliations
  • 1School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250358, China
  • 2CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center forExcellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
  • 3Department of Materials Science and Engineering, College of Engineering, Peking University,Beijing 100871, China
  • 4Research Center for Wide Gap Semiconductor, Peking University, Beijing 100871, China
  • 5University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(93)

    [1] Hall R N, Fenner G E, Kingsley J D et al. Coherent light emission from GaAs junctions[J]. Physical Review Letters, 9, 366-368(1962).

    [2] Gather M C, Yun S H. Single-cell biological lasers[J]. Nature Photonics, 5, 406-410(2011).

    [3] Du W N, Zhang S, Shi J et al. Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Perot cavity[J]. ACS Photonics, 5, 2051-2059(2018).

    [4] Zhong Y G, Wei Q, Liu Z et al. Low threshold Fabry-Perot mode lasing from lead iodide trapezoidal nanoplatelets[J]. Small, 14, 1801938(2018).

    [5] Mi Y, Zhong Y G, Zhang Q et al. Continuous-wave pumped perovskite lasers[J]. Advanced Optical Materials, 7, 1900544(2019).

    [6] Leuthold J, Hoessbacher C, Muehlbrandt S et al. Plasmonic communications: light on a wire[J]. Optics and Photonics News, 24, 28-35(2013).

    [8] Chen J, Du W N, Shi J W et al. Perovskite quantum dot lasers[J]. InfoMat, 2, 170-183(2020).

    [9] Liang D, Bowers J E. Recent progress in lasers on silicon[J]. Nature Photonics, 4, 511-517(2010).

    [10] Howlader M M R, Watanabe T, Suga T. Investigation of the bonding strength and interface current of p-Si/n-GaAs wafers bonded by surface activated bonding at room temperature[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 19, 2114-2118(2001).

    [11] Zhou Y C, Zhu Z H, Crouse D et al. Electrical properties of wafer-bonded GaAs/Si heterojunctions[J]. Applied Physics Letters, 73, 2337-2339(1998).

    [13] Chang Y H, Zhang W J, Zhu Y H et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection[J]. ACS Nano, 8, 8582-8590(2014).

    [14] Dumcenco D, Ovchinnikov D, Marinov K et al. Large-area epitaxial monolayer MoS2[J]. ACS Nano, 9, 4611-4620(2015).

    [15] Huang J K, Pu J, Hsu C L et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications[J]. ACS Nano, 8, 923-930(2014).

    [16] Lee Y H, Zhang X Q, Zhang W J et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 24, 2320-2325(2012).

    [17] Ji Q Q, Zhang Y F, Gao T et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence[J]. Nano Letters, 13, 3870-3877(2013).

    [18] Zhang Y S, Shi J P, Han G F et al. Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution[J]. Nano Research, 8, 2881-2890(2015).

    [19] Gao Y, Liu Z B, Sun D M et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils[J]. Nature Communications, 6, 8569(2015).

    [20] Yang P F, Zou X L, Zhang Z P et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass[J]. Nature Communications, 9, 979(2018).

    [21] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [22] Novoselov K S, Jiang D, Schedin F et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451-10453(2005).

    [23] Morozov S V, Novoselov K S, Katsnelson M I et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 100, 016602(2008).

    [25] Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 110, 132-145(2010).

    [26] Kim K, Choi J Y, Kim T et al. A role for graphene in silicon-based semiconductor devices[J]. Nature, 479, 338-344(2011).

    [27] Pan A L, Zhang K, Liu X F et al. Focus on 2D material nanophotonics[J]. Nanotechnology, 30, 030201(2019).

    [28] Splendiani A, Sun L, Zhang Y B et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 10, 1271-1275(2010).

    [29] Cheiwchanchamnangij T. Lambrecht W R L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2[J]. Physical Review B, 85, 205302(2012).

    [30] Ramasubramaniam A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides[J]. Physical Review B, 86, 115409(2012).

    [31] Qiu D Y, da Jornada F H, Louie S G. Optical spectrum of MoS2: many-body effects and diversity of exciton states[J]. Physical Review Letters, 111, 216805(2013).

    [32] Chernikov A, Berkelbach T C, Hill H M et al. Exciton binding energy and Nonhydrogenic Rydberg Series in monolayer WS2[J]. Physical Review Letters, 113, 076802(2014).

    [33] He K L, Kumar N, Zhao L et al. Tightly bound excitons in monolayer WSe2[J]. Physical Review Letters, 113, 026803(2014).

    [34] Wang G, Marie X, Gerber I et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances[J]. Physical Review Letters, 114, 097403(2015).

    [36] Lien D H, Amani M, Desai S B et al. Large-area and bright pulsed electroluminescence in monolayer semiconductors[J]. Nature Communications, 9, 1229(2018).

    [38] Xiao D, Liu G B, Feng W X et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides[J]. Physical Review Letters, 108, 196802(2012).

    [40] Cao T, Wang G, Han W P et al. Valley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nature Communications, 3, 887(2012).

    [42] Schaibley J R, Yu H Y, Clark G et al. Valleytronics in 2D materials[J]. Nature Reviews Materials, 1, 16055(2016).

    [43] Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 499, 419-425(2013).

    [45] Ceballos F, Bellus M Z, Chiu H Y et al. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure[J]. ACS Nano, 8, 12717-12724(2014).

    [47] Rivera P, Schaibley J R, Jones A M et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures[J]. Nature Communications, 6, 6242(2015).

    [48] Mak K F, Shan J. Opportunities and challenges of interlayer exciton control and manipulation[J]. Nature Nanotechnology, 13, 974-976(2018).

    [49] Binder J, Howarth J, Withers F et al. Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures[J]. Nature Communications, 10, 2335(2019).

    [50] Mak K F, Lee C, Hone J et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 105, 136805(2010).

    [51] Bernardi M, Palummo M, Grossman J C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials[J]. Nano Letters, 13, 3664-3670(2013).

    [54] Bao W Z, Cai X H, Kim D et al. High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects[J]. Applied Physics Letters, 102, 042104(2013).

    [58] Perea-López N, Lin Z, Pradhan N R et al. CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage[J]. 2D Materials, 1, 011004(2014).

    [59] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).

    [60] Yang S C, Wang Y, Sun H D. Advances and prospects for whispering gallery mode microcavities[J]. Advanced Optical Materials, 3, 1136-1162(2015).

    [61] Heylman K D, Knapper K A, Horak E H et al. Optical microresonators for sensing and transduction: a materials perspective[J]. Advanced Materials, 29, 1700037(2017).

    [63] Garrett C G B, Kaiser W, Bond W L. Stimulated emission into optical whispering modes of spheres[J]. Physical Review, 124, 1807-1809(1961).

    [64] Tamboli A C, Haberer E D, Sharma R et al. Room-temperature continuous-wave lasing in GaN/InGaN microdisks[J]. Nature Photonics, 1, 61-64(2007).

    [65] Chao C Y, Guo L J. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance[J]. Applied Physics Letters, 83, 1527-1529(2003).

    [66] Du W N, Zhang S, Wu Z Y et al. Unveiling lasing mechanism in CsPbBr3 microsphere cavities[J]. Nanoscale, 11, 3145-3153(2019).

    [68] Mi Y, Jin B, Zhao L Y et al. High-quality hexagonal nonlayered CdS nanoplatelets for low-threshold whispering-gallery-mode lasing[J]. Small, 15, 1901364(2019).

    [69] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58, 2059-2062(1987).

    [70] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 58, 2486-2489(1987).

    [72] Liu X Z, Galfsky T, Sun Z et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 9, 30-34(2015).

    [73] Dufferwiel S, Schwarz S, Withers F et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities[J]. Nature Communications, 6, 8579(2015).

    [74] Wu S F, Buckley S, Jones A M et al. Control of two-dimensional excitonic light emission via photonic crystal[J]. 2D Materials, 1, 011001(2014).

    [75] Gan X T, Gao Y D, Mak K et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity[J]. Applied Physics Letters, 103, 181119(2013).

    [77] Wu S F, Buckley S, Schaibley J R et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds[J]. Nature, 520, 69-72(2015).

    [78] Ye Y, Wong Z J, Lu X F et al. Monolayer excitonic laser[J]. Nature Photonics, 9, 733-737(2015).

    [79] Salehzadeh O, Djavid M, Tran N H et al. Optically pumped two-dimensional MoS2 lasers operating at room-temperature[J]. Nano Letters, 15, 5302-5306(2015).

    [80] Shang J Z, Cong C X, Wang Z L et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers[J]. Nature Communications, 8, 543(2017).

    [81] Li Y Z, Zhang J X, Huang D D et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity[J]. Nature Nanotechnology, 12, 987-992(2017).

    [82] Fang H L, Liu J, Li H J et al. 1305 nm few-layer MoTe2-on-silicon laser-like emission[J]. Laser & Photonics Reviews, 12, 1800015(2018).

    [83] Fang H L, Liu J, Lin Q L et al. Laser-like emission from a sandwiched MoTe2 heterostructure on a silicon single-mode resonator[J]. Advanced Optical Materials, 7, 1900538(2019).

    [84] Zhao L Y, Shang Q Y, Gao Y et al. High-temperature continuous-wave pumped lasing from large-area monolayer semiconductors grown by chemical vapor deposition[J]. ACS Nano, 12, 9390-9396(2018).

    [85] Liu Y D, Fang H L, Rasmita A et al. 5(4): eaav4506(2019).

    [86] Paik E Y, Zhang L, Burg G W et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures[J]. Nature, 576, 80-84(2019).

    [88] Withers F, del Pozo-Zamudio O, Mishchenko A et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures[J]. Nature Materials, 14, 301-306(2015).

    [89] Liu C H, Clark G, Fryett T et al. Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode[J]. Nano Letters, 17, 200-205(2017).

    [90] Bhattacharya P, Xiao B, Das A et al. Solid state electrically injected exciton-polariton laser[J]. Physical Review Letters, 110, 206403(2013).

    [91] Ohtani K, Meng B, Franckié M et al. 5(7): eaau1632(2019).

    [92] Bhattacharya P, Frost T, Deshpande S et al. Room temperature electrically injected polariton laser[J]. Physical Review Letters, 112, 236802(2014).

    [93] Zhang Q. LiuX F. Exciton-polaritons in semiconductors[J]. Journal of Semiconductors, 40, 090401(2019).

    Tools

    Get Citation

    Copy Citation Text

    Wang Qi, Zhong Yangguang, Zhao Liyun, Shi Jianwei, Zhang Shuai, Wang Gongtang, Zhang Qing, Liu Xinfeng. Lasers Based on Two-Dimensional Layered Materials[J]. Chinese Journal of Lasers, 2020, 47(7): 701008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jan. 19, 2020

    Accepted: --

    Published Online: Jul. 10, 2020

    The Author Email:

    DOI:10.3788/CJL202047.0701008

    Topics