Optics and Precision Engineering, Volume. 32, Issue 10, 1582(2024)

Underwater image enhancement synthesizing multi-scale information and attention mechanisms

Xiaohua XIA1、*, Yuquan ZHONG1, Peng HU1, Yunshi YAO1,2, Jiguang GENG2, and Liangqi ZHANG2
Author Affiliations
  • 1Key Laboratory of Road Construction Technology and Equipment, Ministry of Education, Chang'an University, Xi'an70064,China
  • 2Henan Wanli Transportation Technology Group Co. Ltd., Xuchang461000, China
  • show less
    References(32)

    [1] [1] 郭继昌, 李重仪, 郭春乐, 等. 水下图像增强和复原方法研究进展[J]. 中国图象图形学报, 2017, 22(3): 273-287. doi: 10.11834/jig.20170301GUOJ C, LIC Y, GUOC L, et al. Research progress of underwater image enhancement and restoration methods[J]. Journal of Image and Graphics, 2017, 22(3): 273-287.(in Chinese). doi: 10.11834/jig.20170301

    [2] [2] 袁国铭, 杨光, 王金峰, 等. 由粗到细的多级小波变换水下图像增强[J]. 光学 精密工程, 2022, 30(22): 2939-2951. doi: 10.37188/ope.20223022.2939YUANG M, YANGG, WANGJ F, et al. Coarse-to-fine underwater image enhancement based on multi-level wavelet transform[J]. Opt. Precision Eng., 2022, 30(22): 2939-2951.(in Chinese). doi: 10.37188/ope.20223022.2939

    [3] [3] 林森, 刘旭. 门控融合对抗网络的水下图像增强[J]. 图学学报, 2021, 42(6): 948-956. doi: 10.11996/JG.j.2095-302X.2021060948LINS, LIUX. Underwater image enhancement algorithm using gated fusion generative adversarial network[J]. Journal of Graphics, 2021, 42(6): 948-956.(in Chinese). doi: 10.11996/JG.j.2095-302X.2021060948

    [4] [4] 王明军, 彭月, 刘燕荣, 等. 模拟水体湍流环境下目标激光点云数据的三维重建与分析[J]. 光电工程, 2023, 50(6): 230004.WANGM J, PENGY, LIUY R, et al. Three-dimensional reconstruction and analysis of target laser point cloud data in simulated turbulent water environment[J]. Opto-Electronic Engineering, 2023, 50(6): 230004.(in Chinese)

    [5] GHANI A S A, ISA N A M. Enhancement of low quality underwater image through integrated global and local contrast correction[J]. Applied Soft Computing, 37, 332-344(2015).

    [6] [6] 胡振宇, 陈琦, 朱大奇. 基于颜色平衡和多尺度融合的水下图像增强[J]. 光学 精密工程, 2022, 30(17): 2133-2146. doi: 10.37188/OPE.20223017.2133HUZ Y, CHENQ, ZHUD Q. Underwater image enhancement based on color balance and multi-scale fusion[J]. Opt. Precision Eng., 2022, 30(17): 2133-2146.(in Chinese). doi: 10.37188/OPE.20223017.2133

    [7] [7] 张楠楠, 李志伟, 郭新军, 等. 使用改进型大气散射模型的双阶段图像修复[J]. 光学 精密工程, 2022, 30(18): 2267-2279. doi: 10.37188/OPE.20223018.2267ZHANGN N, LIZ W, GUOX J, et al. Two-stage image restoration using improved atmospheric scattering model[J]. Opt. Precision Eng., 2022, 30(18): 2267-2279.(in Chinese). doi: 10.37188/OPE.20223018.2267

    [8] [8] 丛润民, 张禹墨, 张晨, 等. 深度学习驱动的水下图像增强与复原研究进展[J]. 信号处理, 2020, 36(9): 1377-1389. doi: 10.16798/j.issn.1003-0530.2020.09.001CONGR M, ZHANGY M, ZHANGC, et al. Research progress of deep learning driven underwater image enhancement and restoration[J]. Journal of Signal Processing, 2020, 36(9): 1377-1389.(in Chinese). doi: 10.16798/j.issn.1003-0530.2020.09.001

    [9] FABBRI C, ISLAM M J, SATTAR J. Enhancing underwater imagery using generative adversarial networks[C], 7159-7165(2018).

    [10] ZHU J Y, PARK T, ISOLA P et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C], 2242-2251(2017).

    [11] ISLAM M J, XIA Y Y, SATTAR J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 5, 3227-3234(2020).

    [12] LI C Y, ANWAR S, HOU J H et al. Underwater image enhancement via medium transmission-guided multi-color space embedding[J]. IEEE Transactions on Image Processing, 30, 4985-5000(2021).

    [13] MA Z Y. A wavelet-based dual-stream network for underwater image enhancement[C], 2769-2773(2022).

    [14] FU Z Q, WANG W, HUANG Y et al. Uncertainty inspired underwater image enhancement[C], 465-482(2022).

    [15] [15] 米泽田, 晋洁, 李圆圆, 等. 基于多尺度级联网络的水下图像增强方法[J]. 电子与信息学报, 2022, 44(10): 3353-3362. doi: 10.11999/JEIT220375MIZ T, JINJ, LIY Y, et al. Underwater image enhancement method based on multi-scale cascade network[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3353-3362.(in Chinese). doi: 10.11999/JEIT220375

    [16] [16] 李云, 孙山林, 黄晴, 等. 基于多路混合注意力机制的水下图像增强网络[J]. 电子与信息学报, 2024, 46(1): 118-128. doi: 10.11999/JEIT230495LIY, SUNS L, HUANGQ, et al. Underwater image enhancement network based on multi-channel hybrid attention mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(1): 118-128.(in Chinese). doi: 10.11999/JEIT230495

    [17] ZHANG D H, WU C Y, ZHOU J C et al. Hierarchical attention aggregation with multi-resolution feature learning for GAN-based underwater image enhancement[J]. Engineering Applications of Artificial Intelligence, 125, 106743(2023).

    [18] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]. October 5, 234-241(9).

    [19] KINOSHITA Y, KIYA H. Convolutional neural networks considering local and global features for image enhancement[C], 2110-2114(2019).

    [20] PARK J, LEE J Y et al. CBAM: convolutional block attention module[C], 3-19(2018).

    [21] ISOLA P, ZHU J Y, ZHOU T H et al. Image-to-image translation with conditional adversarial networks[C], 5967-5976(2017).

    [22] YI Z L, ZHANG H, TAN P et al. DualGAN: unsupervised dual learning for image-to-image translation[C], 2868-2876(2017).

    [23] [23] 范新南, 杨鑫, 史朋飞, 等. 特征融合生成对抗网络的水下图像增强[J]. 计算机辅助设计与图形学学报, 2022, 34(2): 264-272. doi: 10.3724/sp.j.1089.2022.18843FANX N, YANGX, SHIP F, et al. Underwater image enhancement based on feature fusion generative adversaral networks[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(2): 264-272.(in Chinese). doi: 10.3724/sp.j.1089.2022.18843

    [24] WANG Y, SONG W, FORTINO G et al. An experimental-based review of image enhancement and image restoration methods for underwater imaging[J]. IEEE Access, 7, 140233-140251(2019).

    [25] PENG Y T, COSMAN P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 26, 1579-1594(2017).

    [26] PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 41, 541-551(2016).

    [27] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 20, 209-212(2013).

    [28] HU K, WENG C H, ZHANG Y W et al. An overview of underwater vision enhancement: from traditional methods to recent deep learning[J]. Journal of Marine Science and Engineering, 10, 241(2022).

    [29] [29] 王欣, 石慧. DRHA-UIE:基于双重残差混合注意力模块的水下图像增强方法[J]. 电子学报, 2023, 51(9): 2398-2407. doi: 10.12263/DZXB.20211619WANGX, SHIH. DRHA-UIE: an underwater image enhancement method based on dual residual hybrid attention block[J]. Acta Electronica Sinica, 2023, 51(9): 2398-2407.(in Chinese). doi: 10.12263/DZXB.20211619

    [30] ZHOU W H, ZHU D M, SHI M et al. Deep images enhancement for turbid underwater images based on unsupervised learning[J]. Computers and Electronics in Agriculture, 202, 107372(2022).

    [31] WANG T H, WANG L L, ZHANG E et al. Underwater image enhancement based on optimal contrast and attenuation difference[J]. IEEE Access, 11, 68538-68549(2023).

    [32] [32] 巩文哲, 褚金奎, 成昊远, 等. 基于无监督学习和注意力机制的水下偏振图像融合[J]. 光学 精密工程, 2023, 31(21): 3212-3220. doi: 10.37188/OPE.20233121.3212GONGW Z, CHUJ K, CHENGH Y, et al. Underwater polarization image fusion based on unsupervised learning and attention mechanisms[J]. Opt. Precision Eng., 2023, 31(21): 3212-3220.(in Chinese). doi: 10.37188/OPE.20233121.3212

    CLP Journals

    [1] Tingting YAO, Zihao FENG, Hengxin ZHAO. Underwater image enhancement by integrating domain transfer and attention mechanisms[J]. Optics and Precision Engineering, 2025, 33(2): 298

    [2] Zhuming CHENG, Jiaxuan LI, San'ao HUANG, Lichao HAN, Peizhen WANG. Underwater image enhancement based on multi-branch residual attention network[J]. Optics and Precision Engineering, 2025, 33(7): 1141

    [3] Tingting YAO, Zihao FENG, Hengxin ZHAO. Underwater image enhancement by integrating domain transfer and attention mechanisms[J]. Optics and Precision Engineering, 2025, 33(2): 298

    [4] Zhuming CHENG, Jiaxuan LI, San'ao HUANG, Lichao HAN, Peizhen WANG. Underwater image enhancement based on multi-branch residual attention network[J]. Optics and Precision Engineering, 2025, 33(7): 1141

    Tools

    Get Citation

    Copy Citation Text

    Xiaohua XIA, Yuquan ZHONG, Peng HU, Yunshi YAO, Jiguang GENG, Liangqi ZHANG. Underwater image enhancement synthesizing multi-scale information and attention mechanisms[J]. Optics and Precision Engineering, 2024, 32(10): 1582

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 14, 2023

    Accepted: --

    Published Online: Jul. 8, 2024

    The Author Email: Xiaohua XIA (xhxia@chd.edu.cn)

    DOI:10.37188/OPE.20243210.1582

    Topics