Opto-Electronic Engineering, Volume. 51, Issue 3, 240037-1(2024)

Development status and trends of single-photon LiDAR technology

Yuyang Zhao1,2, Pengfei Zhou1,2, Tianpeng Xie1,2, Chenghao Jiang1, Yan Jiang1, Zhengwei Zhao1, and Jingguo Zhu1、*
Author Affiliations
  • 1Institute of Microelectronics of the Chinese Academy of Science, Beijing 100029, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(21)
    The principle of pulse accumulation single photon detection
    (a) Results of 3D imaging for a car at 330 m by Buller et al; (b) Results of 3D imaging for a human model at 325 m by Buller et al[14]
    Coded modulation of random coding single photon detection technique[16]
    Chaos single photon detection system[21]
    Chirped modulation single-photon detection principle [16]
    (a) Working principle diagram of avalanche photodiode[33]; (b) The typical PDE variation curve of Si SPAD with wavelength[34]
    Point cloud before and after data processing for the SPL100
    Imaging algorithm effect diagrams of chirp modulated single-photon LiDAR[61]. (a) Accurate depth map of the target scene “Art”; (b) Performance comparisons of different methods with various conditions; (c) Photon efficiency of different approaches
    Reconstruction results of the method proposed by Lindell et al[64]
    Results of single photon for long-distance detection at 21 km[70]. (a) Photograph of targets and its location in the map; (b) Histogram of return photons from the target
    Imaging system and results of single photon for long-distance detection at 201.5 km[11]. (a) Imaging system for long-distance detection at 201.5 km; (b) Photograph of the target; (c) Results of the algorithm proposed by Lindell; (d) Reconstructed 3D profile
    A single photon system for underwater detection[78]
    (a) Comparison of imaging results with smog[81]; (b) The single photon imaging system with 64×64 InGaAs SPAD detectors[84]
    The reconstruction results of the PCE-Net[87]
    ATLAS system architecture and results for glacier height measurement by ATLAS[89]. (a) ATLAS system architecture; (b) Results for glacier height measurement by ATLAS
    The Leica SPL100 system and terrain features acquired by the SPL100[57]. (a) The Leica SPL100 system; (b) Results reconstructed by the SPL100
    (a) Performance metrics and imaging results of ZVISION EZ6; (b) The result of 3D imaging by iPhone 12 Pro
    • Table 1. Recent progress and important parameters of Si SPAD detectors

      View table
      View in Article

      Table 1. Recent progress and important parameters of Si SPAD detectors

      ReferenceTechnologyYearSize/μmTiming jitter/psDead time/nsAP/%DCR/cpsPeak PDE
      [38]65 nm standard CMOS2018207.8100<1028008%@470 nm
      [39]65 nm standard CMOS2021101393.5-23323.8@420 nm
      [40]130 nm CIS201923.78127--5025%@465 nm
      [36]180 nm CIS20209.4---0.426.7%@520 nm
      [41]180 nm CIS2021501650<30.2355%@480 nm
      [42]110 nm CIS20231068-0.1512.673%@440 nm
      [43]160 nm BCD202110/20/30750.9/1.90.14/0.090.1964%@490 nm
      [44]55 nm BCD20218.8520.970.970.162%@530 nm
      [45]55 nm BCD202314.4552500038.289.4%@450 nm
    • Table 2. Recent progress and important parameters of InGaAs/InP SPAD detectors

      View table
      View in Article

      Table 2. Recent progress and important parameters of InGaAs/InP SPAD detectors

      ReferenceYearSize/μmTiming Jitter /psDead time/nsAP/%DCR/cpsPeak PDE
      [52]2018<100-2<2-10%@1060 nm
      [50]2020--885.53k@253 K40%@1550 nm
      [53]2021-70-4.520k@225 K50%@1550 nm
      [54]202220---43.8k@247 K55.4%@1550 nm
      [55]202225---9.09k@223 K25.72%@1550 nm
      [49]202210159--1k@225 K33%@1064 nm
      [56]2023-44201.4-21%@1550 nm
    • Table 3. Recent progress and important parameters of SPAD LiDAR in long-range detection

      View table
      View in Article

      Table 3. Recent progress and important parameters of SPAD LiDAR in long-range detection

      ReferenceYearSystemDistance /kmWavelength/nmPower/mWArrayModeFOV/μradPDE/%Aperture /mm
      [74]2013Pulse accumulation4.51550<0.664 × 64flash380026-
      [75]2014Random coding1.77155063800 (peak)----50
      [69]2017Pulse accumulation10.5155010-scan28~30210
      [76]2017Pulse accumulation2.55323100*1scan24750~36.895
      [70]2018Pulse accumulation2115500.5-scan80~3.58130
      [71]2020Pulse accumulation8.21550120128 × 128scan22.335279
      [73]2020Pulse accumulation4515501201*1scan22.315-
      [11]2021Pulse accumulation201.515506001*1scan11.219.3280
      [77]2023Pulse accumulation13.81550300-scan---
    • Table 4. Single-photon LiDAR products of partial companies

      View table
      View in Article

      Table 4. Single-photon LiDAR products of partial companies

      CompanyYearProductFOVDistance/mPower/WFrame
      Ouster2020ES226°(H) × 13°(V)20012~1810~30
      Ouster2020OS2360°(H) × 22.5°(V)20018~2420
      南京芯视界2020VI433073°(H) × 58°(V)15-30
      IBEO2021Ibeonext11.2°(H) × 5.6°(V)140--
      Sense Photonics2021MultiRangeTM-200--
      亮道智能2022LDSatellite120°(H) × 75°(V)30<1010~25
      速腾聚创2022RS-LiDAR-E1120°(H) × 90°(V)30-10~30
      禾赛科技2023ET25120°(H) × 25°(V)2501210/20
      SolidVue2023ES-200--
      一径科技2023ZVISION EZ6120°(H) × 20°(V)180<15-
      华为2023--250-20
      灵明光子2023ADS6311 ToF120°(H) × 90°(V)30320
    Tools

    Get Citation

    Copy Citation Text

    Yuyang Zhao, Pengfei Zhou, Tianpeng Xie, Chenghao Jiang, Yan Jiang, Zhengwei Zhao, Jingguo Zhu. Development status and trends of single-photon LiDAR technology[J]. Opto-Electronic Engineering, 2024, 51(3): 240037-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Feb. 7, 2024

    Accepted: Mar. 27, 2024

    Published Online: Jul. 8, 2024

    The Author Email: Jingguo Zhu (朱精果)

    DOI:10.12086/oee.2024.240037

    Topics