Photonics Research, Volume. 3, Issue 5, 283(2015)
Deep-UV fluorescence lifetime imaging microscopy
[1] [1] Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic threedimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Materials Research Society Symposium Proceedings (Materials Research Society, 1999; 2004), Vol. 782, pp. 63–68.
[2] [2] A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-achip for rapid algae population screening,” Biomed. Opt. Express 2, 658–664 (2011).
[3] [3] Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micromechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).
[4] [4] M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[5] [5] K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by micro-explosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76, 1000–1002 (2000).
[6] [6] Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Selforganized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[7] [7] V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, and P. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 57404 (2006).
[8] [8] F. A. Umran, Y. Liao, M. M. Elias, K. Sugioka, R. Stoian, G. Cheng, and Y. Cheng, “Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation,” Opt. Express 21, 15259–15267 (2013).
[9] [9] E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37, 215–323 (2013).
[10] [10] C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[11] [11] R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38, 119– 156 (2014).
[12] [12] K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3003 (1992).
[13] [13] A. Clayton, F. Walker, S. Orchard, C. Henderson, D. Fuchs, J. Rothacker, E. Nice, and A. Burgess, “Ligand-induced dimertetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis,” J. Biol. Chem. 280, 30392–30399 (2005).
[14] [14] V. R. Caiolfa, M. Zamai, G. Malengo, A. Andolfo, C. D. Madsen, J. Sutin, M. A. Digman, E. Gratton, F. Blasi, and N. Sidenius, “Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies,” J. Cell Biol. 179, 1067–1082 (2007).
[15] [15] P. Vita, N. Kuril ik, S. Jur nas, A. ukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).
[16] [16] K. Y. Nelson, D. W. McMartin, C. K. Yost, K. J. Runtz, and T. Ono, “Point-of-use water disinfection using uv light-emitting diodes to reduce bacterial contamination,” Environ. Sci. Pollut. Res. 20, 5441–5448 (2013).
[17] [17] M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).
[18] [18] M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of gan-based ultraviolet-c light emitting diodes-uv leds-for water disinfection,” Water Res. 45, 1481–1489 (2011).
[19] [19] J. T. Wessels, U. Pliquett, and F. S. Wouters, “Light-emitting diodes in modern microscopy—from David to Goliath,” Cytometry Part A 81A, 188–197 (2012).
[20] [20] R. A. Judge, K. Swift, and C. González, “An ultraviolet fluorescence- based method for identifying and distinguishing protein crystals,” Acta Crystallogr. Sect. D D61, 60–66 (2005).
[21] [21] R. Kubiliūt , K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).
[22] [22] G. Gervinskas, P. R. Stoddart, A. H. A. Clayton, A. ukauskas, and S. Juodkazis, “Light extraction and fluorescence in UV micro-fluidic applications,” Proc. AIP 21, 29 (2012)
[23] [23] L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[24] [24] L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamsato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
[25] [25] M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and nearinfrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959– 9964 (1999).
[26] [26] R. Buividas, S. Rek tyt , M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3, 1674–1686 (2013).
[27] [27] H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with near-infrared femtosecond laser,” J. Phys. Chem. 104, 3450–3455 (2000).
[28] [28] O. Efimov, S. Juodkazis, and H. Misawa, “Intrinsic single and multiple pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region,” Phys. Rev. A 69, 042903 (2004).
[29] [29] S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197– 198, 705–709 (2002).
[30] [30] S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).
[31] [31] E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett. 82, 2901–2903 (2003).
[32] [32] E. Gratton, D. M. Jameson, and R. D. Hall, “Multifrequency phase and modulation fluorometry,” Annu. Rev. Biophys. Bioeng. 13, 105–124 (1984).
[33] [33] S. Juodkazis, P. Eliseev, H.-B. Sun, M. Watanabe, H. Misawa, T. Sugahara, and S. Sakai, “Annealing of GaN-InGaN multi quantum wells: correlation between the bangap and yellow photoluminescence,” Jpn. J. Appl. Phys. 39, 393–396 (2000).
[34] [34] P. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, “Laser-induced damage threshold and surface processing of GaN at 400 nm wavelength,” Jpn. J. Appl. Phys. 38, L839– L841 (1999).
[35] [35] T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys. 9, 253 (2007).
[36] [36] M. Beresna, M. Gecevi ius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103, 131903 (2013).
[37] [37] S. Juodkazis, V. Mizeikis, M. Sud ius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129–133 (2008).
[38] [38] S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett. 88, 201909 (2006).
[39] [39] L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
[40] [40] S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic ” J. Non-Cryst. Solids 355, 1160–1162 (2009).
[41] [41] S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laserinduced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[42] [42] E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther- Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
Get Citation
Copy Citation Text
Christiaan J. de Jong, Alireza Lajevardipour, Mindaugas Gecevi?ius, Martynas Beresna, Gediminas Gervinskas, Peter G. Kazansky, Yves Bellouard, Andrew H. A. Clayton, Saulius Juodkazis, "Deep-UV fluorescence lifetime imaging microscopy," Photonics Res. 3, 283 (2015)
Category: Microscopy
Received: Jul. 2, 2015
Accepted: Aug. 21, 2015
Published Online: Jan. 6, 2016
The Author Email: Saulius Juodkazis (sjuodkazis@swin.edu.au)