OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 23, Issue 2, 93(2025)
Neural-Radiance-Fields-Based Framework for Novel View Fringe-Pattern Phase Synthesis
[2] [2] Kemao Q. Carrier fringe pattern analysis:Links between methods[J]. Optics and Lasers in Engineering, 2022, 150:106874.
[4] [4] Zhang S, Yang Y, Qin Q, et al. Rapid blind denoising method for grating fringe images based on noise level estimation[J]. IEEE Sensors Journal, 2021, 21(6):8150-8160.
[5] [5] An H, Cao Y, Wu H, et al. Spatial-temporal phase unwrapping algorithm for fringe projection profilometry[J]. Opt. Express, 2021, 29(13):20657.
[7] [7] Yan K, Yu Y, Huang C, et al. Fringe pattern denoising based on deep learning[J]. Optics Communications, 2019, 437:148-152.
[8] [8] Yin W, Chen Q, Feng S, et al. Temporal phase unwrapping using deep learning[J]. Sci. Rep., 2019, 9(1):20175.
[9] [9] Bai S, Luo X, Xiao K, et al. Deep absolute phase recovery from single-frequency phase map for handheld 3D measurement[J]. Optics Communications, 2022, 512:128008.
[10] [10] Feng S, Chen Q, Gu G, et al. Fringe pattern analysis using deep learning[J]. Adv. Photon., 2019, 1(2):1.
[11] [11] Qiao G, Huang Y, Song Y, et al. A single-shot phase retrieval method for phase measuring deflectometry based on deep learning[J]. Optics Communications, 2020, 476:126303.
[12] [12] Wang F, Wang C, Guan Q. Single-shot fringe projection profilometry based on deep learning and computer graphics[J]. Opt. Express, 2021, 29(6):8024.
[13] [13] Zheng Y, Wang S, Li Q, et al. Fringe projection profilometry by conducting deep learning from its digital twin[J]. Opt. Express, 2020, 28(24):36568.
[14] [14] Liu H, Yan N, Shao B, et al. Deep learning in fringe projection:A review[J]. Neurocomputing, 2024, 581:127493.
[15] [15] Mildenhall B, Srinivasan P P, Tancik M, et al. NeRF:representing scenes as neural radiance fields for view synthesis[C]. Commun ACM, 2022, 65(1):99-106.
[19] [19] He X, Sun J, Wang Y, et al. Detector-free structure from motion[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), 2024. 21594-21603.
[20] [20] Zuo C, Qian J, Feng S, et al. Deep learning in optical metrology:A review[J]. Light Sci. Appl., 2022, 11(1):39.
[21] [21] Mller T, Evans A, Schied C, et al. Instant neural graphics primitives with a multiresolution hash encoding[J]. ACM Trans. Graph., 2022, 41(4):1-15.
[22] [22] Huang X, Zhang Q, Feng Y, et al. HDR-NeRF:High dynamic range neural radiance fields[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New Orleans, LA, USA:IEEE, 2022. 18377-18387.
[23] [23] Deng K, Liu A, Zhu J Y, et al. Depth-supervised NeRF:Fewer views and faster training for free[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), 2022:12872-12881.
Get Citation
Copy Citation Text
RAN Chen-xun, XIN Jing, ZHANG Qi-can, WANG Ya-jun. Neural-Radiance-Fields-Based Framework for Novel View Fringe-Pattern Phase Synthesis[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2025, 23(2): 93