Infrared and Laser Engineering, Volume. 51, Issue 11, 20220093(2022)

Compressed spectral measurement technology based on coding of spectrum domain

Yijing Xu, Zhipeng Wu, and Qilong Wang
Author Affiliations
  • School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
  • show less
    References(103)

    [1] R O Green, M L Eastwood, C M Sarture, et al. Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Environment, 65, 227-248(1998).

    [2] L Whitmore, B A Wallace. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers, 89, 392-400(2008).

    [3] J M Perr, K G Furton, J R Almirall. Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection. Journal of Separation Science, 28, 177-183(2005).

    [4] A J Elmore, X Shi, N J Gorence, et al. Spatial distribution of agricultural residue from rice for potential biofuel production in China. Biomass & Bioenergy, 32, 22-27(2008).

    [5] J R Bacon, O T Butler, W R L Cairns, et al. Atomic spectrometry update - a review of advances in environmental analysis. Journal of Analytical Atomic Spectrometry, 35, 49-53(2020).

    [6] J Shang, Q L Meng, R S Huang, et al. Nondestructive testing of kiwifruit quality and maturity by fiber optic spectroscopy. Optics and Precision Engineering, 29, 1190-1198(2021).

    [7] Y Su, Y-X Liao, Y-L Guo. Extraction of individual component spectra in gas chromatograph coupled with ion trap mass spectrometer by principle component analysis. Acta Chimica Sinica, 65, 1377-1380(2007).

    [8] Z Shi, Q L Wang, J Peng, et al. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Science China-Earth Sciences, 57, 1671-1680(2014).

    [9] C M Huang, Q Bi, G S Stiles, et al. Fast full search equivalent encoding algorithms for image compression using vector quantization. IEEE Transactions on Image Processing, 1, 413-416(1992).

    [10] M Srivastava, J H Freed. Singular Value Decomposition Method To Determine Distance Distributions in Pulsed Dipolar Electron Spin Resonance: II. Estimating Uncertainty. Journal of Physical Chemistry A, 123, 359-370(2019).

    [11] P Wang, R Menon. Computational spectroscopy via singular-value decomposition and regularization. Optics Express, 22, 21541-2150(2014).

    [12] C-C Chang, H-N Lee. On the estimation of target spectrum for filter-array based spectrometers. Optics Express, 16, 1056-1061(2008).

    [13] D L Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52, 1289-306(2006).

    [14] E J Candes, M B Wakin. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25, 21-30(2008).

    [15] E J Candes, J Romberg, T Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52, 489-509(2006).

    [16] [16] Lan R M. Singlephoton counting spectral measurement based on compressed sensing [D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2016. (in Chinese)

    [17] [17] Wang Z Q. Research on compressed sensing of diseased image data based on C++ [D]. Xi''an: University of Science Technology, 2016. (in Chinese)

    [18] L C Jiao, S Tan. Multiscale geometric analysis of image: Review and prospect. Acta Electronica Sinica, 1975-1981(2003).

    [19] R Baraniuk, M Davenport, R Devore, et al. A simple proof of the restricted isometry property for random matrices. Constructive Approximation, 28, 253-263(2008).

    [20] R G Baraniuk. Compressive sensing. IEEE Signal Processing Magazine, 24, 118-121(2007).

    [21] [21] Wang S. Research on compressed sensing spectral measurement based on electrooptic regulated transmissivity coding [D]. Taiyuan: Nth University of China, 2020. (in Chinese)

    [22] J A Tropp, S J Wright. Computational methods for sparse solution of linear inverse problems. Proceedings of the IEEE, 98, 948-958(2010).

    [23] S G Mallat, Z F Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41, 3397-3415(1993).

    [24] J A Tropp, A C Gilbert. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53, 4655-4666(2007).

    [25] D L Donoho, Y Tsaig, I Drori, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory, 58, 1094-1121(2012).

    [26] D Needell, R Vershynin. Signal recovery from Incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected Topics in Signal Processing, 4, 310-316(2010).

    [27] S-J Kim, K Koh, M Lustig, et al. An interior-point method for large-scale l(1)-regularized least squares. IEEE Journal of Selected Topics in Signal Processing, 1, 606-617(2007).

    [28] Ma T Figueiredo, R D Nowak, S J Wright. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 1, 586-597(2007).

    [29] S J Wright, R D Nowak, M a T Figueiredo. Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing, 57, 2479-2493(2009).

    [30] Z Yang, T Albrow-Owen, W Cai, et al. Miniaturization of optical spectrometers. Science, 371, 480(2021).

    [31] Y S Zhao, W J He, Z Y Liu, et al. Development of convex flaring grating in coded aperture spectral Imager. Infrared and Laser Engineering, 20220007(20225103).

    [32] Z D Gao, H X Gao, Y Y Zhu, et al. Summary of snapshot spectral imaging technology. Optics and Precision Engineering, 28, 1323-1343(2020).

    [33] Q Zheng, L Wen, Q Chen. Research progress of computational microspectrometer based on speckle inspection. Opto-Electronic Engineering, 48, 4-8(2021).

    [34] B Redding, H Cao. Using a multimode fiber as a high-resolution, low-loss spectrometer. Optics Letters, 37, 3384-3386(2012).

    [35] S F Liew, B Redding, M A Choma, et al. Broadband multimode fiber spectrometer. Optics Letters, 41, 2029-2032(2016).

    [36] Z Meng, J Li, C Yin, et al. Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing. Aip Advances, 9, 015004(2019).

    [37] N H Wan, F Meng, T Schroeder, et al. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre. Nature Communications, 6, 7762(2015).

    [38] G A Sefler, T J Shaw, G C Valley. Demonstration of speckle-based compressive sensing system for recovering RF signals. Optics Express, 26, 21390-21402(2018).

    [39] B Redding, S F Liew, Y Bromberg, et al. Evanescently coupled multimode spiral spectrometer. Optica, 3, 956-962(2016).

    [40] M Piels, D Zibar. Compact silicon multimode waveguide spectrometer with enhanced bandwidth. Scientific Reports, 7, 43454(2017).

    [41] B Redding, S F Liew, R Sarma, et al. Compact spectrometer based on a disordered photonic chip. Nature Photonics, 7, 746-751(2013).

    [42] T Yang, C Xu, H-P Ho, et al. Miniature spectrometer based on diffraction in a dispersive hole array. Optics Letters, 40, 3217-3220(2015).

    [43] [43] Gat N. Imaging spectroscopy using tunable filters: A review. Conference on Wavelet Applications VII[C]Proc SPIE, 2000, 4056: 5064.

    [44] J P Carmo, R P Rocha, M Bartek, et al. A review of visible-range Fabry-Perot microspectrometers in silicon for the industry. Optics and Laser Technology, 44, 2312-2320(2012).

    [45] [45] Zhang H Y, Wang X L, Soos J, et al. Design of a miniature solidstate NIR spectrometer[C] Conference on Infrared Detects Instrumentation f Astronomy, 1995, 2475: 376383.

    [46] H Herrmann, K Schafer, C Schmidt. Low-loss tunable integrated acoustooptical wavelength filter in LiNbO3 with strong sidelobe suppression. IEEE Photonics Technology Letters, 10, 120-122(1998).

    [47] A Guarino, G Poberaj, D Rezzonico, et al. Electro-optically tunable microring resonators in lithium niobate. Nature Photonics, 1, 407-410(2007).

    [48] Y Yao, J Hou, H Liu, et al. Design of programmable multi-wavelength tunable filter on lithium niobate. Results in Physics, 15, 102741(2019).

    [49] Y P Miao, J X Wu, W Lin, et al. Magnetic field tunability of optical microfiber taper integrated with ferrofluid. Optics Express, 21, 29914-29920(2013).

    [50] S R Mallinson, J H Jerman. Miniature micromachined Fabry-Perot interferometers in silicon. Electronics Letters, 23, 1041-1043(1987).

    [51] J Stone, L W Stulz, D Marcuse, et al. Narrow-band FiEnd etalon filters using expanded-core fibers. Journal of Lightwave Technology, 10, 1851-1854(1992).

    [52] Y Oiknine, I August, D G Blumberg, et al. Compressive sensing resonator spectroscopy. Optics Letters, 42, 25-28(2017).

    [53] X C Yu, Y Q Xu, J C Cai, et al. Research progress of tunable micro-nano filter structure. Chinese Optics, 14, 1069-1088(2021).

    [54] J H Correia, Graaf G De, S H Kong, et al. Single-chip CMOS optical microspectrometer. Sensors and Actuators a-Physical, 82, 191-197(2000).

    [55] S H Kong, J H Correia, Graaf G De, et al. Integrated silicon microspectrometers. IEEE Instrumentation & Measurement Magazine, 4, 34-38(2001).

    [56] A Emadi, H Wu, Graaf G De, et al. Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter. Optics Express, 20, 489-507(2012).

    [57] [57] Wu X N. Research on Spectral Modulation Reconstruction of Improved FP Microarray Based on Compressed Sensing [M]. Taiyuan: Nth University of China, 2021. (in Chinese)

    [58] J Oliver, W-B Lee, H-N Lee. Filters with random transmittance for improving resolution in filter-array-based spectrometers. Optics Express, 21, 3969-3689(2013).

    [59] S-W Wang, C Xia, X Chen, et al. Concept of a high-resolution miniature spectrometer using an integrated filter array. Optics Letters, 32, 632-640(2007).

    [60] W-B Lee, C Kim, G W Ju, et al. Design of thin-film filters for resolution improvements in filter-array based spectrometers using DSP. Next-Generation Spectroscopic Technologies Ix, 9855, 98550(2016).

    [61] S H Kim, H S Park, J H Choi, et al. Integration of colloidal photonic crystals toward miniaturized spectrometers. Advanced Materials, 22, 946(2010).

    [62] B Momeni, E S Hosseini, A Adibi. Planar photonic crystal microspectrometers in silicon-nitride for the visible range. Optics Express, 17, 17060-17069(2009).

    [63] Z Wang, S Yi, A Chen, et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nature Communications, 10, 1020(2019).

    [64] K M Bryan, Z Jia, N K Pervez, et al. Inexpensive photonic crystal spectrometer for colorimetric sensing applications. Optics Express, 21, 4411-4423(2013).

    [65] Z Wang, Z Yu. Spectral analysis based on compressive sensing in nanophotonic structures. Optics Express, 22, 25608-25614(2014).

    [66] P Guo, Z Wang, B Shi, et al. Compressive sensing based on mesoscopic chaos of silicon optomechanical photonic crystal. IEEE Photonics Journal, 12, 3022801(2020).

    [67] J Bao, M G Bawendi. A colloidal quantum dot spectrometer. Nature, 523, 67(2015).

    [68] H Y Li, L H Bian, K Gu, et al. A near-infrared miniature quantum dot spectrometer. Advanced Optical Materials, 9, 0376(2021).

    [69] X Zhu, L Bian, H Fu, et al. Broadband perovskite quantum dot spectrometer beyond human visual resolution. Light-Science Applications, 9, 73(2020).

    [70] U Kurokawa, B I Choi, C-C Chang. Filter-based miniature spectrometers: Spectrum reconstruction using adaptive regularization. IEEE Sensors Journal, 11, 1556-1563(2011).

    [71] A Tittl, A Leitis, M K Liu, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 360, 1105(2018).

    [72] C-C Chang, N-T Lin, U Kurokawa, et al. Spectrum reconstruction for filter-array spectrum sensor from sparse template selection. Optical Engineering, 50, 4402(2011).

    [73] B Cerjan, N J Halas. Toward a nanophotonic nose: A compressive sensing-enhanced, optoelectronic mid-infrared spectrometer. Acs Photonics, 6, 79-86(2019).

    [74] Q Chen, L Liang, Q Zheng, et al. On-chip readout plasmonic mid-IR gas sensor. Opto-Electronic Advances, 3, 190040(2020).

    [75] B Craig, V R Shrestha, J Meng, et al. Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces. Optics Letters, 43, 4481-4484(2018).

    [76] B Zheng, L Li, J Wang, et al. On-chip measurement of photoluminescence with high sensitivity monolithic spectrometer. Advanced Optical Materials, 8, 2000191(2020).

    [77] J J Dong. The smallest nanowire spectrometers. Frontiers of Optoelectronics, 12, 341(2019).

    [78] Z Yang, T Albrow-Owen, H Cui, et al. Single-nanowire spectrometers. Science, 365, 1017(2019).

    [79] J Meng, J J Cadusch, K B Crozier. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm. Nano Letters, 20, 320-328(2020).

    [80] Y August, A Stern. Compressive sensing spectrometry based on liquid crystal devices. Optics Letters, 38, 4996-4999(2013).

    [81] Q Wang, L Ma, C Li, et al. A spectral super-resolution method of LCTF based on compressive sensing. Transactions of Beijing Institute of Technology, 38, 40-45, 72(2018).

    [82] S A Jewell, P Vukusic, N W Roberts. Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi. New Journal of Physics, 9, 99(2007).

    [83] S Lowrey, Silva L De, I Hodgkinson, et al. Observation and modeling of polarized light from scarab beetles. Journal of the Optical Society of America a-Optics Image Science and Vision, 24, 2418-2425(2007).

    [84] B Guo. Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal. Physics of Plasmas, 16, 043508(2009).

    [85] D Hermann, M Diem, S F Mingaleev, et al. Photonic crystals with anomalous dispersion: Unconventional propagating modes in the photonic band gap. Physical Review B, 77, 035112(2008).

    [86] A Argyros, T A Birks, S G Leon-Saval, et al. Photonic bandgap with an index step of one percent. Optics Express, 13, 309-314(2005).

    [87] Q Meng, Z Ouyang, Jong C Wang, et al. Mode types and their related properties of one-dimensional photonic crystal resonant cavity. Acta Optica Sinica, 27, 1290-1294(2007).

    [88] M Q Zou, R Yang, J F Li, et al. Optical properties of quantum dots and their applications in life science. Journal of Analytical Measurement, 133-137(2005).

    [89] D Zhang, P Wang, X Jiao, et al. Progress in surface plasmon subwavelength optics. Physics, 34, 508-512(2005).

    [90] W Zhen-Lin. A review on research progress in surface plasmons. Progress in Physics, 29, 287-324(2009).

    [91] T W Ebbesen, H J Lezec, H F Ghaemi, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667-669(1998).

    [92] H Liu, P Lalanne. Microscopic theory of the extraordinary optical transmission. Nature, 452, 728-731(2008).

    [93] M X Li, D Y Wang, C Zhang. Principle and application of metamaterial surface structure color. Chinese Optics, 14, 900-926(2021).

    [94] H Sun, W Tian, X Wang, et al. In situ formed gradient bandgap-tunable perovskite for ultrahigh-speed color/spectrum-sensitive photodetectors via electron-donor control. Advanced Materials, 32, e1908108(2020).

    [95] [95] Zhang M N, Wu X, Riaud A, et al. Spectrum projection with a bgapgradient perovskite cell f colour perception[J]. LightScience & Applications. 2020, 9(1):324327.

    [96] R A Crocombe. Portable spectroscopy. Applied Spectroscopy, 72, 1701-1751(2018).

    [97] [97] Malinen J, Rissanen A, Saari H, et al. Advances in miniature spectrometer sens development[C]Sensing Technologies + Applications, 2014, 9101: 91010C.

    [98] A Herrero-Bermello, A V Velasco, H Podmore, et al. Temperature dependence mitigation in stationary Fourier-transform on-chip spectrometers. Optics Letters, 42, 2239-2242(2017).

    [99] W Ng, B Minasny, M Montazerolghaem, et al. Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra. Geoderma, 352, 251-267(2019).

    [100] D Xiao, Tuan L Ba, Thuy Lam H Thai. Iron ore identification method using reflectance spectrometer and a deep neural network framework. Spectrochimica Act a Part A: Molecular and Biomolecular Spectroscopy, 248, 119168(2020).

    [101] D L Li, B Lu. Optical fiber sensor recognition algorithm based on deep neural network. Infrared and Laser Engineering, 51, 20210971(2022).

    [102] D Jha, K Choudhary, F Tavazza, et al. Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning. Nature Communications, 10, 5316(2019).

    [103] J S Smith, B T Nebgen, R Zubatyuk, et al. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. Nature Communications, 10, 2903(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yijing Xu, Zhipeng Wu, Qilong Wang. Compressed spectral measurement technology based on coding of spectrum domain[J]. Infrared and Laser Engineering, 2022, 51(11): 20220093

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Photoelectric measurement

    Received: May. 10, 2022

    Accepted: --

    Published Online: Feb. 9, 2023

    The Author Email:

    DOI:10.3788/IRLA20220093

    Topics