Infrared and Laser Engineering, Volume. 51, Issue 11, 20220093(2022)
Compressed spectral measurement technology based on coding of spectrum domain
[1] Green R O, Eastwood M L, Sarture C M, et al. Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)[J]. Remote Sensing of Environment, 65, 227-248(1998).
[2] Whitmore L, Wallace B A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases[J]. Biopolymers, 89, 392-400(2008).
[3] Perr J M, Furton K G, Almirall J R. Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection[J]. Journal of Separation Science, 28, 177-183(2005).
[4] Elmore A J, Shi X, Gorence N J, et al. Spatial distribution of agricultural residue from rice for potential biofuel production in China[J]. Biomass & Bioenergy, 32, 22-27(2008).
[5] Bacon J R, Butler O T, Cairns W R L, et al. Atomic spectrometry update - a review of advances in environmental analysis[J]. Journal of Analytical Atomic Spectrometry, 35, 49-53(2020).
[6] Shang J, Meng Q L, Huang R S, et al. Nondestructive testing of kiwifruit quality and maturity by fiber optic spectroscopy[J]. Optics and Precision Engineering, 29, 1190-1198(2021).
[7] Su Y, Liao Y-X, Guo Y-L. Extraction of individual component spectra in gas chromatograph coupled with ion trap mass spectrometer by principle component analysis[J]. Acta Chimica Sinica, 65, 1377-1380(2007).
[8] Shi Z, Wang Q L, Peng J, et al. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations[J]. Science China-Earth Sciences, 57, 1671-1680(2014).
[9] Huang C M, Bi Q, Stiles G S, et al. Fast full search equivalent encoding algorithms for image compression using vector quantization[J]. IEEE Transactions on Image Processing, 1, 413-416(1992).
[10] Srivastava M, Freed J H. Singular Value Decomposition Method To Determine Distance Distributions in Pulsed Dipolar Electron Spin Resonance: II. Estimating Uncertainty[J]. Journal of Physical Chemistry A, 123, 359-370(2019).
[11] Wang P, Menon R. Computational spectroscopy via singular-value decomposition and regularization[J]. Optics Express, 22, 21541-2150(2014).
[12] Chang C-C, Lee H-N. On the estimation of target spectrum for filter-array based spectrometers[J]. Optics Express, 16, 1056-1061(2008).
[13] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-306(2006).
[14] Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 25, 21-30(2008).
[15] Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 52, 489-509(2006).
[16] [16] Lan R M. Singlephoton counting spectral measurement based on compressed sensing [D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2016. (in Chinese)
[17] [17] Wang Z Q. Research on compressed sensing of diseased image data based on C++ [D]. Xi''an: University of Science Technology, 2016. (in Chinese)
[18] Jiao L C, Tan S. Multiscale geometric analysis of image: Review and prospect[J]. Acta Electronica Sinica, 1975-1981(2003).
[19] Baraniuk R, Davenport M, Devore R, et al. A simple proof of the restricted isometry property for random matrices[J]. Constructive Approximation, 28, 253-263(2008).
[20] Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 24, 118-121(2007).
[21] [21] Wang S. Research on compressed sensing spectral measurement based on electrooptic regulated transmissivity coding [D]. Taiyuan: Nth University of China, 2020. (in Chinese)
[22] Tropp J A, Wright S J. Computational methods for sparse solution of linear inverse problems[J]. Proceedings of the IEEE, 98, 948-958(2010).
[23] Mallat S G, Zhang Z F. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 41, 3397-3415(1993).
[24] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 53, 4655-4666(2007).
[25] Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 58, 1094-1121(2012).
[26] Needell D, Vershynin R. Signal recovery from Incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 4, 310-316(2010).
[27] Kim S-J, Koh K, Lustig M, et al. An interior-point method for large-scale l(1)-regularized least squares[J]. IEEE Journal of Selected Topics in Signal Processing, 1, 606-617(2007).
[28] Figueiredo Ma T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 1, 586-597(2007).
[29] Wright S J, Nowak R D, Figueiredo M a T. Sparse reconstruction by separable approximation[J]. IEEE Transactions on Signal Processing, 57, 2479-2493(2009).
[30] Yang Z, Albrow-Owen T, Cai W, et al. Miniaturization of optical spectrometers[J]. Science, 371, 480(2021).
[31] Zhao Y S, He W J, Liu Z Y, et al. Development of convex flaring grating in coded aperture spectral Imager[J]. Infrared and Laser Engineering, 20220007(20225103).
[32] Gao Z D, Gao H X, Zhu Y Y, et al. Summary of snapshot spectral imaging technology[J]. Optics and Precision Engineering, 28, 1323-1343(2020).
[33] Zheng Q, Wen L, Chen Q. Research progress of computational microspectrometer based on speckle inspection[J]. Opto-Electronic Engineering, 48, 4-8(2021).
[34] Redding B, Cao H. Using a multimode fiber as a high-resolution, low-loss spectrometer[J]. Optics Letters, 37, 3384-3386(2012).
[35] Liew S F, Redding B, Choma M A, et al. Broadband multimode fiber spectrometer[J]. Optics Letters, 41, 2029-2032(2016).
[36] Meng Z, Li J, Yin C, et al. Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing[J]. Aip Advances, 9, 015004(2019).
[37] Wan N H, Meng F, Schroeder T, et al. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre[J]. Nature Communications, 6, 7762(2015).
[38] Sefler G A, Shaw T J, Valley G C. Demonstration of speckle-based compressive sensing system for recovering RF signals[J]. Optics Express, 26, 21390-21402(2018).
[39] Redding B, Liew S F, Bromberg Y, et al. Evanescently coupled multimode spiral spectrometer[J]. Optica, 3, 956-962(2016).
[40] Piels M, Zibar D. Compact silicon multimode waveguide spectrometer with enhanced bandwidth[J]. Scientific Reports, 7, 43454(2017).
[41] Redding B, Liew S F, Sarma R, et al. Compact spectrometer based on a disordered photonic chip[J]. Nature Photonics, 7, 746-751(2013).
[42] Yang T, Xu C, Ho H-P, et al. Miniature spectrometer based on diffraction in a dispersive hole array[J]. Optics Letters, 40, 3217-3220(2015).
[43] [43] Gat N. Imaging spectroscopy using tunable filters: A review. Conference on Wavelet Applications VII[C]Proc SPIE, 2000, 4056: 5064.
[44] Carmo J P, Rocha R P, Bartek M, et al. A review of visible-range Fabry-Perot microspectrometers in silicon for the industry[J]. Optics and Laser Technology, 44, 2312-2320(2012).
[45] [45] Zhang H Y, Wang X L, Soos J, et al. Design of a miniature solidstate NIR spectrometer[C] Conference on Infrared Detects Instrumentation f Astronomy, 1995, 2475: 376383.
[46] Herrmann H, Schafer K, Schmidt C. Low-loss tunable integrated acoustooptical wavelength filter in LiNbO3 with strong sidelobe suppression[J]. IEEE Photonics Technology Letters, 10, 120-122(1998).
[47] Guarino A, Poberaj G, Rezzonico D, et al. Electro-optically tunable microring resonators in lithium niobate[J]. Nature Photonics, 1, 407-410(2007).
[48] Yao Y, Hou J, Liu H, et al. Design of programmable multi-wavelength tunable filter on lithium niobate[J]. Results in Physics, 15, 102741(2019).
[49] Miao Y P, Wu J X, Lin W, et al. Magnetic field tunability of optical microfiber taper integrated with ferrofluid[J]. Optics Express, 21, 29914-29920(2013).
[50] Mallinson S R, Jerman J H. Miniature micromachined Fabry-Perot interferometers in silicon[J]. Electronics Letters, 23, 1041-1043(1987).
[51] Stone J, Stulz L W, Marcuse D, et al. Narrow-band FiEnd etalon filters using expanded-core fibers[J]. Journal of Lightwave Technology, 10, 1851-1854(1992).
[52] Oiknine Y, August I, Blumberg D G, et al. Compressive sensing resonator spectroscopy[J]. Optics Letters, 42, 25-28(2017).
[53] Yu X C, Xu Y Q, Cai J C, et al. Research progress of tunable micro-nano filter structure[J]. Chinese Optics, 14, 1069-1088(2021).
[54] Correia J H, De Graaf G, Kong S H, et al. Single-chip CMOS optical microspectrometer[J]. Sensors and Actuators a-Physical, 82, 191-197(2000).
[55] Kong S H, Correia J H, De Graaf G, et al. Integrated silicon microspectrometers[J]. IEEE Instrumentation & Measurement Magazine, 4, 34-38(2001).
[56] Emadi A, Wu H, De Graaf G, et al. Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter[J]. Optics Express, 20, 489-507(2012).
[57] [57] Wu X N. Research on Spectral Modulation Reconstruction of Improved FP Microarray Based on Compressed Sensing [M]. Taiyuan: Nth University of China, 2021. (in Chinese)
[58] Oliver J, Lee W-B, Lee H-N. Filters with random transmittance for improving resolution in filter-array-based spectrometers[J]. Optics Express, 21, 3969-3689(2013).
[59] Wang S-W, Xia C, Chen X, et al. Concept of a high-resolution miniature spectrometer using an integrated filter array[J]. Optics Letters, 32, 632-640(2007).
[60] Lee W-B, Kim C, Ju G W, et al. Design of thin-film filters for resolution improvements in filter-array based spectrometers using DSP[J]. Next-Generation Spectroscopic Technologies Ix, 9855, 98550(2016).
[61] Kim S H, Park H S, Choi J H, et al. Integration of colloidal photonic crystals toward miniaturized spectrometers[J]. Advanced Materials, 22, 946(2010).
[62] Momeni B, Hosseini E S, Adibi A. Planar photonic crystal microspectrometers in silicon-nitride for the visible range[J]. Optics Express, 17, 17060-17069(2009).
[63] Wang Z, Yi S, Chen A, et al. Single-shot on-chip spectral sensors based on photonic crystal slabs[J]. Nature Communications, 10, 1020(2019).
[64] Bryan K M, Jia Z, Pervez N K, et al. Inexpensive photonic crystal spectrometer for colorimetric sensing applications[J]. Optics Express, 21, 4411-4423(2013).
[65] Wang Z, Yu Z. Spectral analysis based on compressive sensing in nanophotonic structures[J]. Optics Express, 22, 25608-25614(2014).
[66] Guo P, Wang Z, Shi B, et al. Compressive sensing based on mesoscopic chaos of silicon optomechanical photonic crystal[J]. IEEE Photonics Journal, 12, 3022801(2020).
[67] Bao J, Bawendi M G. A colloidal quantum dot spectrometer[J]. Nature, 523, 67(2015).
[68] Li H Y, Bian L H, Gu K, et al. A near-infrared miniature quantum dot spectrometer[J]. Advanced Optical Materials, 9, 0376(2021).
[69] Zhu X, Bian L, Fu H, et al. Broadband perovskite quantum dot spectrometer beyond human visual resolution[J]. Light-Science Applications, 9, 73(2020).
[70] Kurokawa U, Choi B I, Chang C-C. Filter-based miniature spectrometers: Spectrum reconstruction using adaptive regularization[J]. IEEE Sensors Journal, 11, 1556-1563(2011).
[71] Tittl A, Leitis A, Liu M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 360, 1105(2018).
[72] Chang C-C, Lin N-T, Kurokawa U, et al. Spectrum reconstruction for filter-array spectrum sensor from sparse template selection[J]. Optical Engineering, 50, 4402(2011).
[73] Cerjan B, Halas N J. Toward a nanophotonic nose: A compressive sensing-enhanced, optoelectronic mid-infrared spectrometer[J]. Acs Photonics, 6, 79-86(2019).
[74] Chen Q, Liang L, Zheng Q, et al. On-chip readout plasmonic mid-IR gas sensor[J]. Opto-Electronic Advances, 3, 190040(2020).
[75] Craig B, Shrestha V R, Meng J, et al. Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces[J]. Optics Letters, 43, 4481-4484(2018).
[76] Zheng B, Li L, Wang J, et al. On-chip measurement of photoluminescence with high sensitivity monolithic spectrometer[J]. Advanced Optical Materials, 8, 2000191(2020).
[77] Dong J J. The smallest nanowire spectrometers[J]. Frontiers of Optoelectronics, 12, 341(2019).
[78] Yang Z, Albrow-Owen T, Cui H, et al. Single-nanowire spectrometers[J]. Science, 365, 1017(2019).
[79] Meng J, Cadusch J J, Crozier K B. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm[J]. Nano Letters, 20, 320-328(2020).
[80] August Y, Stern A. Compressive sensing spectrometry based on liquid crystal devices[J]. Optics Letters, 38, 4996-4999(2013).
[81] Wang Q, Ma L, Li C, et al. A spectral super-resolution method of LCTF based on compressive sensing[J]. Transactions of Beijing Institute of Technology, 38, 40-45, 72(2018).
[82] Jewell S A, Vukusic P, Roberts N W. Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi[J]. New Journal of Physics, 9, 99(2007).
[83] Lowrey S, De Silva L, Hodgkinson I, et al. Observation and modeling of polarized light from scarab beetles[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 24, 2418-2425(2007).
[84] Guo B. Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal[J]. Physics of Plasmas, 16, 043508(2009).
[85] Hermann D, Diem M, Mingaleev S F, et al. Photonic crystals with anomalous dispersion: Unconventional propagating modes in the photonic band gap[J]. Physical Review B, 77, 035112(2008).
[86] Argyros A, Birks T A, Leon-Saval S G, et al. Photonic bandgap with an index step of one percent[J]. Optics Express, 13, 309-314(2005).
[87] Meng Q, Ouyang Z, Wang Jong C, et al. Mode types and their related properties of one-dimensional photonic crystal resonant cavity[J]. Acta Optica Sinica, 27, 1290-1294(2007).
[88] Zou M Q, Yang R, Li J F, et al. Optical properties of quantum dots and their applications in life science[J]. Journal of Analytical Measurement, 133-137(2005).
[89] Zhang D, Wang P, Jiao X, et al. Progress in surface plasmon subwavelength optics[J]. Physics, 34, 508-512(2005).
[90] Zhen-Lin W. A review on research progress in surface plasmons[J]. Progress in Physics, 29, 287-324(2009).
[91] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 391, 667-669(1998).
[92] Liu H, Lalanne P. Microscopic theory of the extraordinary optical transmission[J]. Nature, 452, 728-731(2008).
[93] Li M X, Wang D Y, Zhang C. Principle and application of metamaterial surface structure color[J]. Chinese Optics, 14, 900-926(2021).
[94] Sun H, Tian W, Wang X, et al. In situ formed gradient bandgap-tunable perovskite for ultrahigh-speed color/spectrum-sensitive photodetectors via electron-donor control[J]. Advanced Materials, 32, e1908108(2020).
[95] [95] Zhang M N, Wu X, Riaud A, et al. Spectrum projection with a bgapgradient perovskite cell f colour perception[J]. LightScience & Applications. 2020, 9(1):324327.
[96] Crocombe R A. Portable spectroscopy[J]. Applied Spectroscopy, 72, 1701-1751(2018).
[97] [97] Malinen J, Rissanen A, Saari H, et al. Advances in miniature spectrometer sens development[C]Sensing Technologies + Applications, 2014, 9101: 91010C.
[98] Herrero-Bermello A, Velasco A V, Podmore H, et al. Temperature dependence mitigation in stationary Fourier-transform on-chip spectrometers[J]. Optics Letters, 42, 2239-2242(2017).
[99] Ng W, Minasny B, Montazerolghaem M, et al. Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra[J]. Geoderma, 352, 251-267(2019).
[100] Xiao D, Ba Tuan L, Thai Thuy Lam H. Iron ore identification method using reflectance spectrometer and a deep neural network framework[J]. Spectrochimica Act a Part A: Molecular and Biomolecular Spectroscopy, 248, 119168(2020).
[101] Li D L, Lu B. Optical fiber sensor recognition algorithm based on deep neural network[J]. Infrared and Laser Engineering, 51, 20210971(2022).
[102] Jha D, Choudhary K, Tavazza F, et al. Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning[J]. Nature Communications, 10, 5316(2019).
[103] Smith J S, Nebgen B T, Zubatyuk R, et al. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning[J]. Nature Communications, 10, 2903(2019).
Get Citation
Copy Citation Text
Yijing Xu, Zhipeng Wu, Qilong Wang. Compressed spectral measurement technology based on coding of spectrum domain[J]. Infrared and Laser Engineering, 2022, 51(11): 20220093
Category: Photoelectric measurement
Received: May. 10, 2022
Accepted: --
Published Online: Feb. 9, 2023
The Author Email: