Chinese Optics, Volume. 16, Issue 3, 607(2023)

Lightweight infrared detection of ammonia leakage using shuffle and self-attention

Yin-hui ZHANG, Hong ZHUANG, Zi-fen HE*, Hong-kuan YANG, and Ying HUANG
Author Affiliations
  • Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • show less
    Figures & Tables(17)
    The overall architecture of the SSANet model
    Change diagram of a real frame of infrared ammonia leakage
    Visualization results of the height/width ratio of the anchor in ammonia leak infrared detection data
    Implementation of channel shuffling
    SK5 Block module structure
    Structure diagram of Transformer block
    Transformer encode structure diagram
    Comparison of enhancement effects by different methods
    The final test results of the SSANet network model
    • Table 1. Initial candidate frame sizes of the three detection layers before and after clustering

      View table
      View in Article

      Table 1. Initial candidate frame sizes of the three detection layers before and after clustering

      检测层聚类前聚类后
      检测层1(10,13)、(16,30)、(33,23)(11,10)、(29,12)、(34,29)
      检测层2(30,61)、(62,45)、(59,119)(52,61)、(62,18)、(64,38)
      检测层3(116,90)、(156,198)、(373,326)(91,38)、(115,22)、(201,45)
    • Table 2. Hyperparameter configuration

      View table
      View in Article

      Table 2. Hyperparameter configuration

      超参数名称超参数值
      批大小16
      初始学习率0.01
      迭代次数400
      动量0.937
      学习率衰减策略余弦退火策略
      权重衰减0.0005
    • Table 3. Objective evaluation indicators of image preprocessing algorithms

      View table
      View in Article

      Table 3. Objective evaluation indicators of image preprocessing algorithms

      图像PSNR/dBAGIE
      原图像23.401.907.06
      预处理图像2.177.53
    • Table 4. Comparison of network performances before and after image preprocessing

      View table
      View in Article

      Table 4. Comparison of network performances before and after image preprocessing

      模型Params/MModel size/MSpeed/msmAP/%
      YOLOv5s7.0514.403.6092.80
      Prep-YOLOv5s7.0514.403.6093.80
    • Table 5. Comparison of network performance before and after clustering

      View table
      View in Article

      Table 5. Comparison of network performance before and after clustering

      模型Params/MModel size/MSpeed/msmAP/%
      YOLOv5s7.0514.403.6092.80
      Kms-YOLOv5s7.0514.403.6093.70
      Kms-Prep-YOLOv5s7.0514.403.6094.30
    • Table 6. Comparison of evaluation indicators for different backbone networks

      View table
      View in Article

      Table 6. Comparison of evaluation indicators for different backbone networks

      模型GFLOPsModel size/M Params /M Speed /ms mAP /%
      GhostNet-YOLOv5s10.6010.505.083.0093.90
      MobileNetv3-YOLOv5s6.307.403.542.8093.50
      ShuffleNetv2-YOLOv5s4.603.401.532.7093.80
      SK5-YOLOv5s4.803.401.572.7094.40
    • Table 7. Comparison of network performance of different BottleNeck structures

      View table
      View in Article

      Table 7. Comparison of network performance of different BottleNeck structures

      模型Model size/M Params /M Speed /ms mAP /%
      SK5-YOLOv5s3.401.572.7094.40
      SK5-YOLOv5s-CSPBottleNeck3.401.542.7093.70
      SK5-YOLOv5s-GhostBottleNeck3.301.502.6094.20
      SK5-YOLOv5s-CbamBottleNeck3.201.472.5092.90
      SSANet3.401.533.2096.30
    • Table 8. Accuracy comparison of different models

      View table
      View in Article

      Table 8. Accuracy comparison of different models

      ModelGFLOPsParams/MModel size/MSpeed/msmAP/%
      YOLOv3154.761.50123.4011.7092.70
      YOLOv3-tiny12.908.7017.403.4037.40
      YOLOv5s16.307.0514.403.6092.80
      YOLOx26.648.9471.908.4389.78
      SSANet4.601.533.403.2096.30
    Tools

    Get Citation

    Copy Citation Text

    Yin-hui ZHANG, Hong ZHUANG, Zi-fen HE, Hong-kuan YANG, Ying HUANG. Lightweight infrared detection of ammonia leakage using shuffle and self-attention[J]. Chinese Optics, 2023, 16(3): 607

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: Jun. 14, 2022

    Accepted: --

    Published Online: May. 31, 2023

    The Author Email:

    DOI:10.37188/CO.2022-0127

    Topics