Chinese Journal of Lasers, Volume. 43, Issue 4, 403001(2016)
Microstructure and Mechanical Properties of AF1410 Ultra-High Strength Steel Using Laser Additive Manufacture Technique
[1] [1] Xu Changgan, Zhang Shaorui. Ultra-high strength steel AF1410 with high toughness[J]. Special Steel, 1993, 14(6): 11-14.
[2] [2] Grujicic M. Coherent precipitation of M2C carbides in AF1410 steel[J]. Materials Science & Engineering A, 1989, 117(5): 215-220.
[3] [3] Yu Wei, Han Peng, Wu Bing. Influence of pre-corrosion on fatigue property of AF1410 EBW joint[J]. Aeronautical Manufacturing Technology, 2010, (20): 86-88.
[4] [4] Lu Bingheng, Li Dichen. Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation, 2013, 42(4): 1-4.
[5] [5] Shi Yusheng, Li Ruidi, Zhang Wenxian, et al.. Study on rapid prototyping process of stainless steel powder by selective laser melting[J]. Rapid Pprototyping and Rapid Manufacturing Technology, 2010, B04(1): 67-72.
[6] [6] Zhao Jianfeng, Ma Zhiyong, Xie Deqiao, et al.. Metal additive manufacturing technique[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(5): 675-683.
[8] [8] Chen Yongcheng, Zhang Shuquan, Tian Xiangjun, et al.. Microstructure and micro-hardness of 4045 Aluminum alloy fabricated by laser melting deposition[J]. Chinese J Lasers, 2015, 42(3): 0303008.
[9] [9] Jiang Hua, Tang Haibo, Fang Yanli, et al.. Microstructure and mechanical properties of rapid solidified ultra-fine columnar grain Nibase superalloy DZ408 by laser melting deposition manufacturing[J]. Chinese J Lasers, 2012, 39(2): 0203004.
[10] [10] Feng Shurong, Zhang Shuquan, Wang Huaming. Wear resistance of laser clad hard particles reinforced intermetallic composite coating on TA15 Alloy[J]. Chinese J Lasers, 2012, 39(2): 0203002.
[11] [11] Handerhan K J, Garrison W M, Moody N R. A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410 [J]. Metallurgical & Materials Transactions A, 1989, 20(1): 105-123.
[12] [12] Garrison W M, Moody N R. Influence of inclusion spacing and microstructure on the fracture toughness of the secondary hardening steel AF1410[J]. Metallurgical & Materials Transactions A, 1987, 18(7): 1257-1263.
[13] [13] Lee K B, Kwon H, Kwon H, et al.. Effects of alloying additions and austenitizing treatments on secondary hardening and fracture behavior for martensitic steels containing both Mo and W[J]. Metallurgical & Materials Transactions A, 2001, 32(7): 1659-1670.
[14] [14] Li Ani, Li Yong, Wang Chunxu, et al.. Influence of Mo on secondary hardening behavior of ultra-high strength AF1410 steel[J]. Iron and Steel, 2007, 42(9): 60-62.
[15] [15] Davis J R. ASM handbook[M]. Allama Iqbal Town: ASM International, 2003: 733-735.
[16] [16] Sun Xiaomin, Liu Dong, Tang Haibo, et al.. Solid-state phase transformation and microstructure of laser direct manufactured TC17 titanium alloy components[J]. Rare Metal Materials and Engineering, 2013, 42(4): 724-729.
[17] [17] Han Shun, Li Yong, Wang Chunxu, et al.. Behavior of rotating-bending fatigue failure of AF1410 steel[J]. Iron and Steel, 2013, 48(3): 82-85.
[18] [18] Zhong Qunpeng, Zhao Zihua. Fractography[M]. Beijing: High Education Press, 2006.
[19] [19] Gan Yong, Tian Zhiling, Dong Han, et al.. Chinese Materials Engineering Canon[M]. Beijing: Chemical Industry Press, 2005.
[20] [20] Cui Zhongqi, Tan Yaochun. Metallurgy and heat treatment[M]. Beijing: China Machine Press, 2010.
Get Citation
Copy Citation Text
Wang Zhihui, Wang Huaming, Liu Dong. Microstructure and Mechanical Properties of AF1410 Ultra-High Strength Steel Using Laser Additive Manufacture Technique[J]. Chinese Journal of Lasers, 2016, 43(4): 403001
Category: laser manufacturing
Received: Oct. 26, 2015
Accepted: --
Published Online: Mar. 29, 2016
The Author Email: Zhihui Wang (izhihui1990@126.com)