Chinese Journal of Lasers, Volume. 46, Issue 9, 910003(2019)

Fiber Bragg Grating Accelerometer Based on Diaphragm and Diamond Structure

Wei Li, Yu Lingling*, Jiang Dazhou, Liu Zhuang, and Li Hengchun
Author Affiliations
  • College of Mechanical and Electrical Engineering, Wuhan University of Technology,Wuhan, Hubei 430070, China
  • show less
    Figures & Tables(18)
    Structural diagram of FBG sensor
    Analysis of force of sensing system
    Vibration model
    Variations in S and f with R
    Variations in S and f with h
    Variations in S and f with r
    Variations in S and f with m
    Deformation diagrams obtained by finite element modal analysis. (a) First-order mode without considering fiber force and diamond structure and fiber; (b)-(d) first-order,second-order,and third-order modes considering fiber force and diamond structure, respectively
    Sensor experimental system. (a) Diagram of calibration experimental system; (b) demodulation principle of optical signal
    Amplitude-frequency response curves of sensor
    Time domain and frequency domain signals of two FBGs of sensor when f=100 Hz and a=5 m·s-2. (a) FBG1, time domain signal; (b) FBG1, frequency domain signal; (c) FBG2, time domain signal; (d) FBG2, frequency domain signal
    |Δλ1-Δλ2| versus excitation acceleration under different excitation frequencies
    Sensor sensitivity versus frequency of excitation signal
    Principal and transverse accelerations of accelerometer
    Temperature response curves of FBG accelerometer
    • Table 1. Parameters of FBG accelerometer structure and material properties

      View table

      Table 1. Parameters of FBG accelerometer structure and material properties

      ParameterParameter descriptionValue
      b /mmDiamond side length12
      l /mmOptical fiber span17
      R /mmWorking radius of diaphragm15
      r /mmHard core radius of diaphragm2
      h /mmThickness of diaphragm0.2
      m /kgQuality of copper block8×10-3
      λ /nmGrating wavelength1500
      Af /m2Cross section area of optical fiber1.227×10-8
      Ed /GPaYoung's modulus of diaphragm200
      μPoisson's ratio of diaphragm0.28
    • Table 2. Physical parameters of main parts of sensor

      View table

      Table 2. Physical parameters of main parts of sensor

      PartMaterialYoung's modulus /GPaPoisson ratioDensity /(kg·m-3)
      DiaphragmStainless steel2000.2477930
      Mass blockBrass960.3808500
      Force transmission partsAluminum alloy710.3302770
      Bolt30 carbon steel2350.3007890
    • Table 3. Sensitivity parameters of sensor under different excitation frequencies

      View table

      Table 3. Sensitivity parameters of sensor under different excitation frequencies

      Excitationfrequency /HzFitting equation /(pm·g-1)Sensitivity /(pm·g-1)
      10λ1λ2|=65.86a-0.5365.33
      50λ1λ2|=68.20a+0.0268.22
      100λ1λ2|=70.93a+0.0771.00
      150λ1λ2|=72.53a-0.5372.00
      200λ1λ2|=75.53a-1.2074.33
      250λ1λ2|=80.06a-2.6577.35
      300λ1λ2|=85.47a-2.4783.00
      350λ1λ2|=87.80a-1.6886.12
      400λ1λ2|=89.60a-0.2789.33
      450λ1λ2|=93.67a+0.4494.11
      500λ1λ2|=97.00a+1.3398.33
    Tools

    Get Citation

    Copy Citation Text

    Wei Li, Yu Lingling, Jiang Dazhou, Liu Zhuang, Li Hengchun. Fiber Bragg Grating Accelerometer Based on Diaphragm and Diamond Structure[J]. Chinese Journal of Lasers, 2019, 46(9): 910003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Dec. 29, 2018

    Accepted: --

    Published Online: Sep. 10, 2019

    The Author Email: Lingling Yu (18883278903@163.com)

    DOI:10.3788/CJL201946.0910003

    Topics