Chinese Journal of Lasers, Volume. 43, Issue 8, 802014(2016)

Molecular Dynamics Simulation of Plastic Deformation of Pure Titanium Under Shock Loading

Chen Yazhou1、*, Zhou Liucheng1, He Weifeng1, Luo Sihai1, Jiao Yang1, Pang Chengqing2, and Liu Peng2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(26)

    [1] [1] Wang Y M, Bringa E M, McNaney J M, et al. Deforming nanocrystalline nickel at ultrahigh strain rates[J]. Applied Physics Letters, 2006, 88(6): 061917.

    [2] [2] Xue Jun, Yang Yong, Li Chen, et al. Research on polarized scattering of self-organized nanogratings induced by femtosecond laser[J]. Acta Optica Sinica, 2014, 34(4): 0432001.

    [3] [3] Tian Qing, ZhouJianzhong, Huang Shu, et al. Relaxation of residual stress on laser-peened surface during cyclic loading[J]. Laser & Optoelectronics Progress, 2014, 51(8): 081403.

    [4] [4] Hua Liang, Tian Wei, Liao Wenhe, et al. Study of thermal-mechanical coupling behavior in laser cladding[J]. Laser & Optoelectronics Progress, 2014, 51(9): 091401.

    [5] [5] Li Y H, Zhou L C, He W F, et al. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperature[J]. Science and Technology of Advanced Materials, 2013, 14(5): 1574-1578.

    [6] [6] Huang Xu, Zhu Zhishou, Wang Honghong. Advanced aeronautical titanium alloys and applications[M]. Beijing: National Defense Industry Press, 2012: 7.

    [7] [7] Nie Xiangfan, He Weifeng, Zang Shunlai, et al. Experimental study on improving high-cycle fatigue performance of TC11 titanium alloy by laser shock peening[J]. Chinese J Lasers, 2013, 40(8): 0803006.

    [9] [9] Amarchinta H K, Grandhi R V, Langer K, et al. Material model validation for laser shock peening process simulation[J]. Modelling and Simulation in Materials Science and Engineering, 2008, 17(1): 015010.

    [10] [10] Ding K, Ye L. Simulation of multiple laser shock peening of a 35CD4 steel alloy[J]. Journal of Materials Processing Technology, 2006, 178(1): 162-169.

    [11] [11] Wu B, Tao S, Lei S. Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments[J]. Applied Surface Science, 2010, 256(13): 4376-4382.

    [12] [12] Wang Zhilong. High-temperature tensile properties and micro-structure of CP-Ti subjected to laser shock peening[D]. Zhenjiang: Jiangsu University, 2015: 45-46.

    [13] [13] Borisenok V A, Zhernokletov M V, Kovalev A E , et al. Phase transitions in shock-loaded titanium at pressures up to 150 GPa[J]. Combustion, Explosion, and Shock Waves, 2014, 50(3): 346-353.

    [14] [14] Zhou L C, Li Y H, He W F, et al. Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening[J]. Materials Science and Engineering: A, 2013, 578: 181-186.

    [15] [15] Ren J Q, Sun Q Y, Lin X, et al. Phase transformation behavior in titanium single-crystal nanopillars under [0001] orientation tension: A molecular dynamics simulation[J]. Computational Materials Science, 2014, 92: 8-12.

    [17] [17] Mishin Y, Mehl M J, Papaconstantopoulos D A, et al. Structural stability and lattice defects in copper: Ab initio, tight-inging, and embedded-atom calculations[J]. Physical Review B, 2001, 63(22): 224106.

    [18] [18] Deng Xiaoliang, Zhu Wenjun, Song Zhenfei, et al. Microscopic mechanism of void coalescence under shock loading[J]. Acta Physica Sinica, 2009, 58(7): 4772-4778.

    [19] [19] Ma Wen, Zhu Wenjun, Zhang Yalin, et al. Construction of metallic nanocrystalline samples by molecular dynamics simulation[J]. Acta Physica Sinica, 2010, 59(7): 4781-4787.

    [20] [20] Holian B L. Modeling shock-wave deformation via molecular dynamics[J]. Physical Review A, 1988, 37(7): 2562.

    [21] [21] Kim I, Kim J, Shin D H, et al. Deformation twins in pure titanium processed by equal channel angular pressing[J]. Scripta Materialia, 2003, 48(6): 813-817.

    [22] [22] Gurao N P, Kapoor R, Suwas S. Deformation behavior of commercially pure titanium at extreme strain rates[J]. Acta Materialia, 2011, 59(9): 3431-3446.

    [23] [23] Xu F, Zhang X F, Ni H T, et al. Effect of twinning on microstructure and texture evolutions of pure Ti during dynamic plastic deformation[J]. Materials Science and Engineering A, 2013, 564: 22-33.

    [24] [24] Li D, Wang F C, Yang Z Y, et al. How to identify dislocations in molecular dynamics simulations[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(12): 2177-2187.

    [25] [25] Cui C, Hu J, Liu Y, et al. Formation of nano-rystalline and amorphous phases on the surface of stainless steel by Nd: YAG pulsed laser irradiation[J]. Applied Surface Science, 2008, 254(21): 6779-6782.

    [26] [26] Cao Yang, Chen Guang, Yan Yinbiao. Current status and prospects of surface self nanocrystallization for iron and steel[J]. Journal of Iron and Steel Research, 2005, 17(2): 1-6.

              Cao Yang, Chen Guang, Yan Yinbiao. Current status and prospects of surface self nanocrystallization for iron and steel[J]. Journal of Iron and Steel Research, 2005, 17(2): 1-6.

    Tools

    Get Citation

    Copy Citation Text

    Chen Yazhou, Zhou Liucheng, He Weifeng, Luo Sihai, Jiao Yang, Pang Chengqing, Liu Peng. Molecular Dynamics Simulation of Plastic Deformation of Pure Titanium Under Shock Loading[J]. Chinese Journal of Lasers, 2016, 43(8): 802014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Mar. 10, 2016

    Accepted: --

    Published Online: Aug. 10, 2016

    The Author Email: Yazhou Chen (164369979@qq.com)

    DOI:10.3788/cjl201643.0802014

    Topics