Laser & Optoelectronics Progress, Volume. 60, Issue 2, 0210013(2023)

Fine-Grained Image Classification Model Based on Improved Transformer

Zhansheng Tian and Libo Liu*
Author Affiliations
  • School of Information Engineering, Ningxia University, Yinchuan 750021, Ningxia , China
  • show less
    Figures & Tables(10)
    Framework of Vision Transformer
    Framework of TransFC
    Self-attention module
    External-attention module
    Visualization of TransFC model on three datasets
    • Table 1. Detailed information of fine-grained image datasets

      View table

      Table 1. Detailed information of fine-grained image datasets

      DatasetNumber of subclassesNumber of samples on training setNumber of samples on test set
      CUB-200-201120059945794
      Stanford Cars12081448041
      Stanford Dogs196120008580
    • Table 2. Ablation experiment analysis of MEA and FS module

      View table

      Table 2. Ablation experiment analysis of MEA and FS module

      No.MethodModel compositionAccuracy /%
      1)ViT(baseline)SA85.8
      2)ViT(EA)EA86.9
      3)ViT(FS)SA+FS86.6
      4)ViT(EA&FS)EA+FS87.9
    • Table 3. Ablation experiment analysis of contrastive loss

      View table

      Table 3. Ablation experiment analysis of contrastive loss

      No.MethodModel compositionAccuracy /%
      1)ViT(baseline)SA85.8
      5)ViT(SA&L_CON)SA+L_CON86.2
      4)ViT(EA&FS)EA+FS87.9
      6)ViT(EA&FS&L_CON)EA+FS+L_CON88.2
    • Table 4. Ablation experiment analysis of distillation loss

      View table

      Table 4. Ablation experiment analysis of distillation loss

      MethodModel compositionTeacherAccuracy /%
      ViT(EA&FS&L_CON)EA+FS+L_CON88.2
      TransFC(EA&FS&L_CON&L_DIS1)EA+FS+L_CON+L_DISVGG-1688.9
      TransFC(EA&FS&L_CON&L_DIS2)EA+FS+L_CON+L_DISResNet-5089.1
      TransFC(EA&FS&L_CON&L_DIS3)EA+FS+L_CON+L_DISResNet-10189.5
      TransFC(EA&FS&L_CON&L_DIS4)(ours)EA+FS+L_CON+L_DISDenseNet-12189.8
    • Table 5. Experiment comparison of different weakly supervised fined-grained image classification methods

      View table

      Table 5. Experiment comparison of different weakly supervised fined-grained image classification methods

      MethodBase modelAccuracy /%
      CUB-200-2011Stanford DogsStanford Cars
      DB24ResNet-5088.687.794.9
      SEF25ResNet-5087.388.894.0
      B-CNN4VGG-1684.191.3
      WS-DAN26Inception V389.490.094.1
      ACNet27VGG-1687.894.3
      ACNet27ResNet-5088.194.6
      MAMC28ResNet-10186.585.293.0
      DVAN6VGG-1679.081.587.1
      RA-CNN5VGG-1985.587.392.5
      MC Loss29ResNet-5087.393.7
      ViT11SA85.887.292.6
      TransFC(ours)EA89.890.294.7
    Tools

    Get Citation

    Copy Citation Text

    Zhansheng Tian, Libo Liu. Fine-Grained Image Classification Model Based on Improved Transformer[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jan. 5, 2022

    Accepted: Mar. 14, 2022

    Published Online: Jan. 6, 2023

    The Author Email: Libo Liu (liulib@163.com)

    DOI:10.3788/LOP220453

    Topics