Journal of Atmospheric and Environmental Optics, Volume. 20, Issue 3, 299(2025)

Research on atmospheric metal layers detection technology by all-solid-state optical parametric oscillator lidar

DU Lifang1, XIAO Chunlei2, ZHENG Haoran1, CHENG Xuewu3, GUO Jixin1,4, WU Fang1,4, LI Faquan3, JIAO Jing1, FANG Shuo2, LIN Zhaoxiang5, XUN Yuchang6, CHEN Zhishan6, and YANG Guotao1、*
Author Affiliations
  • 1National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
  • 2Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • 3Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • 5South-Central Minzu University, Wuhan 430074, China
  • 6Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    References(29)

    [1] Plane J M C. Cosmic dust in the Earth's atmosphere[J]. Chemical Society Reviews, 41, 6507-6518(2012).

    [2] Plane J M C, Feng W H, Dawkins E C M. The mesosphere and metals: Chemistry and changes[J]. Chemical Reviews, 115, 4497-4541(2015).

    [3] Carrillo-Sánchez J D, Gómez-Martín J C, Bones D L et al. Cosmic dust fluxes in the atmospheres of Earth, Mars, and Venus[J]. Icarus, 335, 113395(2020).

    [4] Huba J D, Krall J, Drob D. Global ionospheric metal ion transport with SAMI3[J]. Geophysical Research Letters, 46, 7937-7944(2019).

    [5] Wang Y, Themens D R, Wang C et al. Simultaneous observations of a polar cap sporadic-E layer by twin incoherent scatter radars at resolute[J]. Journal of Geophysical Research: Space Physics, 127, e2022JA030366(2022).

    [6] Bowman M R, Gibson A J, Sandford M C W. Atmospheric sodium measured by a tuned laser radar[J]. Nature, 221, 456-457(1969).

    [7] Yi F, Zhang S D, Yu C M et al. Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan(30.5° N, 114.4° E), China[J]. Journal of Geophysical Research: Atmospheres, 112, D04303(2007).

    [8] Wang Z L, Yang G T, Wang J H et al. Seasonal variations of meteoric potassium layer over Beijing (40.41° N, 116.01° E)[J]. Journal of Geophysical Research: Space Physics, 122, 2106-2118(2017).

    [9] Wu F J, Chu X Z, Du L F et al. First simultaneous lidar observations of thermosphere-ionosphere sporadic Ni and Na (TISNi and TISNa) layers (~105–120 km) over Beijing (40.42° N, 116.02° E)[J]. Geophysical Research Letters, 49, e2022GL100397(2022).

    [10] She C Y, Latifi H, Yu J R et al. Two-frequency lidar technique for mesospheric Na temperature measurements[J]. Geophysical Research Letters, 17, 929-932(1990).

    [11] Kawahara T D, Nozawa S, Saito N et al. Sodium temperature/wind lidar based on laser-diode-pumped Nd:YAG lasers deployed at Tromsø, Norway (69.6° N, 19.2° E)[J]. Optics Express, 25, A491(2017).

    [12] Xia Y, Du L F, Cheng X W et al. Development of a solid-state sodium Doppler lidar using an all-fiber-coupled injection seeding unit for simultaneous temperature and wind measurements in the mesopause region[J]. Optics Express, 25, 5264-5278(2017).

    [13] Chu X Z, Pan W L, Papen G C et al. Fe Boltzmann temperature lidar: Design, error analysis, and initial results at the North and South Poles[J]. Applied Optics, 41, 4400-4410(2002).

    [14] Du L F, Yang G T, Xiao C L et al. The all solid state lidar for detecting Ca and Ca+ layers[P].

    [15] Chen F L, Xun Y C, Wang Z L et al. Preliminary results of Calcium atom analysis by the wind-temperature-metal-constituents LiDAR at Mohe middle-upper atmosphere for the Phase II of Chinese Meridian Project[J]. Reviews of Geophysics and Planetary Physics, 55, 131-137(2024).

    [16] Chu X Z, Yu Z B, Gardner C S et al. Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155 km) at McMurdo (77.8° S, 166.7° E), Antarctica[J]. Geophysical Research Letters, 38, 23807(2011).

    [17] Chu X Z, Huang W T, Fong W et al. First lidar observations of polar mesospheric clouds and Fe temperatures at McMurdo (77.8° S, 166.7° E), Antarctica[J]. Geophysical Research Letters, 38, L16810(2011).

    [18] Friedman J S, Chu X Z, Brum C G M et al. Observation of a thermospheric descending layer of neutral K over Arecibo[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 104, 253-259(2013).

    [19] Chu X Z, Nishimura Y, Xu Z H et al. First simultaneous lidar observations of thermosphere-ionosphere Fe and Na (TIFe and TINa) layers at McMurdo (77.84° S, 166.67° E), Antarctica with concurrent measurements of aurora activity, enhanced ionization layers, and converging electric field[J]. Geophysical Research Letters, 47, e2020GL090181(2020).

    [20] Gao Q, Chu X Z, Xue X H et al. Lidar observations of thermospheric Na layers up to 170 km with a descending tidal phase at Lijiang (26.7° N, 100.0° E), China[J]. Journal of Geophysical Research: Space Physics, 120, 9213-9220(2015).

    [21] Gardner C S, Papen G C, Chu X Z et al. First lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the north and south poles[J]. Geophysical Research Letters, 28, 1199-1202(2001).

    [22] Du L F, Zheng H R, Xiao C L et al. The all-solid-state narrowband lidar developed by optical parametric oscillator/amplifier (OPO/OPA) technology for simultaneous detection of the Ca and Ca+ layers[J]. Remote Sensing, 15, 4566(2023).

    [23] Wu F J, Zheng H R, Cheng X W et al. Simultaneous detection of the Ca and Ca+ layers by a dual-wavelength tunable lidar system[J]. Applied Optics, 59, 4122-4130(2020).

    [24] Wu F J. Lidar System and Detection Studies of Metal Atoms and Ions[D](2022).

    [25] Wang J, Zuo X M, Sun Y Y et al. Multilayered sporadic-E response to the annular solar eclipse on June 21, 2020[J]. Space Weather, 19, e2020SW002643(2021).

    [26] Zhou X, Li Z Z, Yue X N et al. Effects of mesoscale gravity waves on sporadic E simulated by a one-dimensional dynamic model[J]. Earth and Planetary Physics, 9, 1-9(2025).

    [27] Jiao J, Chu X Z, Jin H et al. First lidar profiling of meteoric Ca+ ion transport from~80 to 300 km in the midlatitude nighttime ionosphere[J]. Geophysical Research Letters, 49, e2022GL100537(2022).

    [28] Du L F, Yang G T, Zheng H R et al[P]. Metal ion lidar for detecting wind temperature density in E-F regions, and detection method there of technical field.

    [29] Wu F, Jiao J, Du L F et al. A three-frequency Ca+ Doppler lidar for ion temperature measurements in the E and F regions[J]. Journal of Geophysical Research: Space Physics, 129, e2024JA032511(2024).

    Tools

    Get Citation

    Copy Citation Text

    Lifang DU, Chunlei XIAO, Haoran ZHENG, Xuewu CHENG, Jixin GUO, Fang WU, Faquan LI, Jing JIAO, Shuo FANG, Zhaoxiang LIN, Yuchang XUN, Zhishan CHEN, Guotao YANG. Research on atmospheric metal layers detection technology by all-solid-state optical parametric oscillator lidar[J]. Journal of Atmospheric and Environmental Optics, 2025, 20(3): 299

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: "Advanced technology of lidar and its application in atmospheric environment" Albun

    Received: Jan. 27, 2025

    Accepted: --

    Published Online: Jun. 9, 2025

    The Author Email: Guotao YANG (gtyang@nssc.ac.cn)

    DOI:10.3969/j.issn.1673-6141.2025.03.005

    Topics