Chinese Journal of Lasers, Volume. 51, Issue 7, 0701018(2024)

Experimental Characteristics of High‐Repetition‐Frequency Harmonic Self‐Mode‐Locked Nd∶YVO4 Laser

Shaokun Wang, Miao Hu*, Mengmeng Xu, Yingying Ji, Zerong Li, Haozhen Li, Meihua Bi, and Xuefang Zhou
Author Affiliations
  • School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang , China
  • show less
    References(26)

    [1] Kaiser R, Huttl B. Monolithic 40-GHz mode-locked MQW DBR lasers for high-speed optical communication systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 125-135(2007).

    [2] Chen J B. Active optical clock[J]. Chinese Science Bulletin, 54, 348-352(2009).

    [3] Wang S Y, Jiang Y, Wu C N et al. Experimental study on all-optical clock recovery of all-fiber mode-locking cavity configuration[J]. Chinese Journal of Lasers, 39, 0505005(2012).

    [4] Wang W P, Chen L, Dong Z et al. Performance comparsion between on-off keying and orthogonal frequency division multiplexing signals in 40 GHz radio-over-fiber systems[J]. Chinese Journal of Lasers, 37, 465-470(2010).

    [5] Tsai C T, Cheng C H, Kuo H C et al. Toward high-speed visible laser lighting based optical wireless communications[J]. Progress in Quantum Electronics, 67, 100225(2019).

    [6] Li Z Y, Yan Q Z, Zhang G G et al. High-frequency terahertz wave generation with cascaded difference frequency generation at polariton resonance[J]. Chinese Journal of Lasers, 49, 0714002(2022).

    [7] Huang W, Nizam M H M, Andonovic I et al. Coherent optical CDMA (OCDMA) systems used for high-capacity optical fiber networks-system description, OTDMA comparison, and OCDMA/WDMA networking[J]. Journal of Lightwave Technology, 18, 765-778(2000).

    [8] Tanzilli S, Tittel W, De Riedmatten H et al. PPLN waveguide for quantum communication[J]. The European Physical Journal D - Atomic, Molecular and Optical Physics, 18, 155-160(2002).

    [9] Peng B Y, Yuan C Z, Zhang R M et al. Progress in gain-switched semiconductor lasers for quantum communication[J]. Acta Optica Sinica, 42, 0327007(2022).

    [10] Zhang H F, Meng W D, Wu Z B et al. One way laser ranging and its measuring experiment[J]. Chinese Journal of Lasers, 40, 0308005(2013).

    [11] Li Z L, Zhai D S, Tang R F et al. Research and experiment on space debris daytime laser ranging based on 532 nm wavelength[J]. Laser & Optoelectronics Progress, 59, 1112003(2022).

    [12] Pan H G, Yu J L, Wang W R et al. Semiconductor optical amplifier based self-mode locking laser and phenomenon of dimidiate frequency[J]. Chinese Journal of Lasers, 40, 1102006(2013).

    [13] Jin Y W, Xu M M, Hu M et al. High-repetition pulsed Nd: YVO4 laser based on the multi-longitudinal-mode beat note[J]. Optical Engineering, 60, 066106(2021).

    [14] Cheng S G, Hu M, Li H Z et al. Manipulating the longitudinal mode distribution in the self-mode-locked Nd∶YVO4 laser with flexible reflectivity and tilted mirror[J]. Optical Engineering, 61, 116102(2022).

    [15] Jin Y W, Hu M, Xu M M et al. Exploiting the etalon effect to manipulate the pulse characteristics of a self-mode-locked Nd∶YVO4 laser with a flexible cavity length[J]. Optics Communications, 517, 128331(2022).

    [16] Zeng Y Y, Shen X H, Mao L et al. Wavelength tunable Kerr mode-locked external cavity surface emitting laser[J]. Chinese Journal of Lasers, 49, 2101004(2022).

    [17] He J L, Fan Y X, Du J et al. 4-ps passively mode-locked Nd∶Gd0.5Y0.5VO4 laser with a semiconductor saturable-absorber mirror[J]. Optics Letters, 29, 2803-2805(2004).

    [18] Gosset C, Merghem K, Martinez A et al. Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm[J]. Applied Physics Letters, 88, 241105(2006).

    [19] Li Y B, Li M, Qiu P P et al. Design of high power low loss 852 nm Fabry-Perot laser[J]. Laser & Optoelectronics Progress, 59, 0314001(2022).

    [20] Zhang Z X, Zhan L, Yang X X et al. Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz[J]. Laser Physics Letters, 4, 592-596(2007).

    [21] Ma H, Yi X J, Chen S H. 1.3 μm high-gain polarization-insensitive strained quantum-well semiconductor optical amplifier[J]. Chinese Journal of Lasers, 31, 971-974(2004).

    [22] Zhang X P, Wang Z H, Liu S et al. Development of single-longitudinal-mode selection technology for solid-state lasers[J]. International Journal of Optics, 2021, 1-13(2021).

    [23] Diddams S A, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum[J]. Science, 369, eaay3676(2020).

    [24] Chen Y F, Zhuang W Z, Liang H C et al. High-power subpicosecond harmonically mode-locked Yb∶YAG laser with pulse repetition rate up to 240 GHz[J]. Laser Physics Letters, 10, 015803(2013).

    [25] Sung C L, Lee C Y, Cho H H et al. Theoretical and experimental studies for high-repetition-rate disordered crystal lasers with harmonic self-mode locking[J]. Optics Express, 24, 3832-3838(2016).

    [26] Wang S, Wang Y B, Feng G Y et al. Harmonically mode-locked Yb: CALGO laser pumped by a single-mode 1.2 W laser diode[J]. Optics Express, 26, 1521-1529(2018).

    Tools

    Get Citation

    Copy Citation Text

    Shaokun Wang, Miao Hu, Mengmeng Xu, Yingying Ji, Zerong Li, Haozhen Li, Meihua Bi, Xuefang Zhou. Experimental Characteristics of High‐Repetition‐Frequency Harmonic Self‐Mode‐Locked Nd∶YVO4 Laser[J]. Chinese Journal of Lasers, 2024, 51(7): 0701018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Aug. 14, 2023

    Accepted: Oct. 11, 2023

    Published Online: Mar. 29, 2024

    The Author Email: Hu Miao (miao_hu@foxmail.com)

    DOI:10.3788/CJL231112

    CSTR:32183.14.CJL231112

    Topics