Chinese Journal of Lasers, Volume. 50, Issue 15, 1507201(2023)
Research Progress of Intelligent Optic-Assisted Technology and Laser Ablation in Minimally Invasive Intervention
[1] Cleary K, Peters T M. Image-guided interventions: technology review and clinical applications[J]. Annual Review of Biomedical Engineering, 12, 119-142(2010).
[2] Chu K F, Dupuy D E. Thermal ablation of tumours: biological mechanisms and advances in therapy[J]. Nature Reviews Cancer, 14, 199-208(2014).
[3] Yun S H, Kwok S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 1, 1-16(2017).
[4] Li Y X, Hu C Q, Ma L F et al. Research progress in intelligent and precise optical diagnosis and treatment technology[J]. Chinese Journal of Lasers, 48, 1507002(2021).
[5] Birlo M, Edwards P J E, Clarkson M et al. Utility of optical see-through head mounted displays in augmented reality-assisted surgery: a systematic review[J]. Medical Image Analysis, 77, 102361(2022).
[6] Barcali E, Iadanza E, Manetti L et al. Augmented reality in surgery: a scoping review[J]. Applied Sciences, 12, 6890(2022).
[7] Gholizadeh M, Bakhshali M A, Mazlooman S R et al. Minimally invasive and invasive liver surgery based on augmented reality training: a review of the literature[J]. Journal of Robotic Surgery, 17, 753-763(2023).
[8] Quero G, Lapergola A, Soler L et al. Virtual and augmented reality in oncologic liver surgery[J]. Surgical Oncology Clinics of North America, 28, 31-44(2019).
[9] Meola A, Cutolo F, Carbone M et al. Augmented reality in neurosurgery: a systematic review[J]. Neurosurgical Review, 40, 537-548(2017).
[10] Contreras López W O, Navarro P A, Crispin S. Intraoperative clinical application of augmented reality in neurosurgery: a systematic review[J]. Clinical Neurology and Neurosurgery, 177, 6-11(2019).
[11] Jud L, Fotouhi J, Andronic O et al. Applicability of augmented reality in orthopedic surgery: a systematic review[J]. BMC Musculoskeletal Disorders, 21, 103(2020).
[12] Sutherland C, Hashtrudi-Zaad K, Sellens R et al. An augmented reality haptic training simulator for spinal needle procedures[J]. IEEE Transactions on Bio-Medical Engineering, 60, 3009-3018(2013).
[13] Auloge P, Cazzato R L, Ramamurthy N et al. Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial[J]. European Spine Journal, 29, 1580-1589(2020).
[14] Bernhardt S, Nicolau S A, Soler L et al. The status of augmented reality in laparoscopic surgery as of 2016[J]. Medical Image Analysis, 37, 66-90(2017).
[15] Hallet J, Soler L, Diana M et al. Trans-thoracic minimally invasive liver resection guided by augmented reality[J]. Journal of the American College of Surgeons, 220, e55-e60(2015).
[16] Thompson S, Schneider C, Bosi M et al. In vivo estimation of target registration errors during augmented reality laparoscopic surgery[J]. International Journal of Computer Assisted Radiology and Surgery, 13, 865-874(2018).
[17] Coelho G, Trigo L, Faig F et al. The potential applications of augmented reality in fetoscopic surgery for antenatal treatment of myelomeningocele[J]. World Neurosurgery, 159, 27-32(2022).
[18] Mela C A, Lemmer D P, Bao F S et al. Real-time dual-modal vein imaging system[J]. International Journal of Computer Assisted Radiology and Surgery, 14, 203-213(2019).
[19] Xing S W, Ding H, Wang G Z. A projection-augmented system for in situ projection for mobile C-arms[J]. Beijing Biomedical Engineering, 38, 551-559(2019).
[20] Wu B X, Liu P, Xiong C et al. Stereotactic co-axial projection imaging for augmented reality neuronavigation: a proof-of-concept study[J]. Quantitative Imaging in Medicine and Surgery, 12, 3792-3802(2022).
[21] Zeng B W, Meng F L, Ding H et al. A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation[J]. International Journal of Computer Assisted Radiology and Surgery, 12, 1355-1368(2017).
[22] Wen R, Chui C K, Ong S H et al. Projection-based visual guidance for robot-aided RF needle insertion[J]. International Journal of Computer Assisted Radiology and Surgery, 8, 1015-1025(2013).
[23] Gao Y, Zhao Y Y, Xie L et al. A projector-based augmented reality navigation system for computer-assisted surgery[J]. Sensors, 21, 2931(2021).
[24] Gavaghan K, Oliveira-Santos T, Peterhans M et al. Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies[J]. International Journal of Computer Assisted Radiology and Surgery, 7, 547-556(2012).
[25] Sebeom P, Shokhrukh B, Yosoon C. Review of Microsoft HoloLens applications over the past five years[J]. Applied Sciences, 11, 7259(2021).
[26] Cheng D W, Wang Q W, Liu Y et al. Design and manufacture AR head-mounted displays: a review and outlook[J]. Light: Advanced Manufacturing, 2, 336(2021).
[27] Luo X H, Dong S Y, Wang Z S et al. Research progress of metasurface-based VR/AR display technology[J]. Laser & Optoelectronics Progress, 59, 2011002(2022).
[28] Xiong J H, Hsiang E L, He Z Q et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives[J]. Light: Science & Applications, 10, 1-30(2021).
[29] Gsaxner C, Li J N, Pepe A et al. The HoloLens in medicine: a systematic review and taxonomy[J]. Medical Image Analysis, 85, 102757(2023).
[30] Ahmad H S, Yoon J W. Intra-operative wearable visualization in spine surgery: past, present, and future[J]. Journal of Spine Surgery, 8, 132-138(2022).
[31] Laverdière C, Corban J, Khoury J et al. Augmented reality in orthopaedics: a systematic review and a window on future possibilities[J]. The Bone & Joint Journal, 101-B, 1479-1488(2019).
[32] Verhey J T, Haglin J M, Verhey E M et al. Virtual, augmented, and mixed reality applications in orthopedic surgery[J]. The International Journal of Medical Robotics+Computer Assisted Surgery: MRCAS, 16, e2067(2020).
[33] Burström G, Persson O, Edström E et al. Augmented reality navigation in spine surgery: a systematic review[J]. Acta Neurochirurgica, 163, 843-852(2021).
[34] Doughty M, Ghugre N, Wright G. Augmenting performance: a systematic review of optical see-through head-mounted displays in surgery[J]. Journal of Imaging, 8, 203(2022).
[35] Liebmann F, Roner S, von Atzigen M et al. Pedicle screw navigation using surface digitization on the Microsoft HoloLens[J]. International Journal of Computer Assisted Radiology and Surgery, 14, 1157-1165(2019).
[36] Dennler C, Jaberg L, Spirig J et al. Augmented reality-based navigation increases precision of pedicle screw insertion[J]. Journal of Orthopaedic Surgery and Research, 15, 174(2020).
[37] Li Y, Chen X L, Wang N et al. A wearable mixed-reality holographic computer for guiding external ventricular drain insertion at the bedside[J]. Journal of Neurosurgery, 131, 1599-1606(2019).
[38] Lareyre F, Chaudhuri A, Adam C et al. Applications of head-mounted displays and smart glasses in vascular surgery[J]. Annals of Vascular Surgery, 75, 497-512(2021).
[39] Williams M A, McVeigh J, Handa A I et al. Augmented reality in surgical training: a systematic review[J]. Postgraduate Medical Journal, 96, 537-542(2020).
[40] Unberath M, Fotouhi J, Hajek J et al. Augmented reality-based feedback for technician-in-the-loop C-arm repositioning[J]. Healthcare Technology Letters, 5, 143-147(2018).
[41] Liao H E, Inomata T, Sakuma I et al. 3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay[J]. IEEE Transactions on Bio-Medical Engineering, 57, 1476-1486(2010).
[42] Ma L F, Jiang W P, Zhang B Y et al. Augmented reality surgical navigation with accurate CBCT-patient registration for dental implant placement[J]. Medical & Biological Engineering & Computing, 57, 47-57(2019).
[43] Chen F, Cui X W, Han B X et al. Augmented reality navigation for minimally invasive knee surgery using enhanced arthroscopy[J]. Computer Methods and Programs in Biomedicine, 201, 105952(2021).
[44] Zhang X R, Chen G W, Liao H E. High-quality see-through surgical guidance system using enhanced 3-D autostereoscopic augmented reality[J]. IEEE Transactions on Bio-Medical Engineering, 64, 1815-1825(2017).
[45] Brunet J N, Mendizabal A, Petit A et al. Physics-based deep neural network for augmented reality during liver surgery[M]. Shen D G, Liu T M, Peters T M, et al. Medical image computing and computer assisted intervention-MICCAI 2019. Lecture notes in computer science, 11768, 137-145(2019).
[46] Doughty M, Ghugre N R. HMD-EgoPose: head-mounted display-based egocentric marker-less tool and hand pose estimation for augmented surgical guidance[J]. International Journal of Computer Assisted Radiology and Surgery, 17, 2253-2262(2022).
[47] Doughty M, Singh K, Ghugre N R. SurgeonAssist-net: towards context-aware head-mounted display-based augmented reality for surgical guidance[M]. de Bruijne M, Cattin P C, Cotin S, et al. Medical image computing and computer assisted intervention-MICCAI 2021. Lecture notes in computer science, 12904, 667-677(2021).
[48] Eckert M, Volmerg J S, Friedrich C M. Augmented reality in medicine: systematic and bibliographic review[J]. JMIR MHealth and UHealth, 7, e10967(2019).
[49] Condino S, Carbone M, Piazza R et al. Perceptual limits of optical see-through visors for augmented reality guidance of manual tasks[J]. IEEE Transactions on Bio-Medical Engineering, 67, 411-419(2020).
[50] Edgcumbe P, Pratt P, Yang G Z et al. Pico Lantern: surface reconstruction and augmented reality in laparoscopic surgery using a pick-up laser projector[J]. Medical Image Analysis, 25, 95-102(2015).
[51] Golse N, Petit A, Lewin M et al. Augmented reality during open liver surgery using a markerless non-rigid registration system[J]. Journal of Gastrointestinal Surgery, 25, 662-671(2021).
[52] Pfeiffer M, Riediger C, Leger S et al. Non-rigid volume to surface registration using a data-driven biomechanical model[M]. Martel A L, Abolmaesumi P, Stoyanov D, et al. Medical image computing and computer assisted intervention-MICCAI 2020. Lecture notes in computer science, 12264, 724-734(2020).
[53] Liu K, Hua J Y, Chen L S et al. Present situation and prospect of glasses-free augmented reality 3D display[J]. Laser & Optoelectronics Progress, 59, 2011004(2022).
[54] Streeter S S, Hebert K A, Bateman L M et al. Current and future applications of fluorescence guidance in orthopaedic surgery[J]. Molecular Imaging and Biology, 25, 46-57(2023).
[55] Sajedi S, Sabet H, Choi H S. Intraoperative biophotonic imaging systems for image-guided interventions[J]. Nanophotonics, 8, 99-116(2019).
[56] Zhou Z T, Wu B, Duan J et al. Optical surgical instrument tracking system based on the principle of stereo vision[J]. Journal of Biomedical Optics, 22, 065005(2017).
[57] Lin Q Y, Cai K, Yang R Q et al. Development and validation of a near-infrared optical system for tracking surgical instruments[J]. Journal of Medical Systems, 40, 107(2016).
[58] Sorriento A, Porfido M B, Mazzoleni S et al. Optical and electromagnetic tracking systems for biomedical applications: a critical review on potentialities and limitations[J]. IEEE Reviews in Biomedical Engineering, 13, 212-232(2020).
[59] Minchev G, Kronreif G, Martínez-Moreno M et al. A novel miniature robotic guidance device for stereotactic neurosurgical interventions: preliminary experience with the iSYS1 robot[J]. Journal of Neurosurgery, 126, 985-996(2017).
[60] Smith J A, Jivraj J, Wong R et al. 30 years of neurosurgical robots: review and trends for manipulators and associated navigational systems[J]. Annals of Biomedical Engineering, 44, 836-846(2016).
[61] Lefranc M, Peltier J. Evaluation of the ROSATM Spine robot for minimally invasive surgical procedures[J]. Expert Review of Medical Devices, 13, 899-906(2016).
[62] Khan A, Meyers J E, Siasios I et al. Next-generation robotic spine surgery: first report on feasibility, safety, and learning curve[J]. Operative Neurosurgery, 17, 61-69(2019).
[63] Tian W, Han X G, Liu B et al. A robot-assisted surgical system using a force-image control method for pedicle screw insertion[J]. PLoS One, 9, e86346(2014).
[64] Lachenmayer A, Tinguely P, Maurer M H et al. Stereotactic image-guided microwave ablation of hepatocellular carcinoma using a computer-assisted navigation system[J]. Liver International, 39, 1975-1985(2019).
[65] Min Z, Ren H L, Meng M Q H. Estimation of surgical tool-tip tracking error distribution in coordinate reference frame involving pivot calibration uncertainty[J]. Healthcare Technology Letters, 4, 193-198(2017).
[66] Yaniv Z. Which pivot calibration?[J]. Proceedings of SPIE, 9415, 941527(2015).
[67] Gerber N, Gavaghan K A, Bell B J et al. High-accuracy patient-to-image registration for the facilitation of image-guided robotic microsurgery on the head[J]. IEEE Transactions on Bio-Medical Engineering, 60, 960-968(2013).
[68] Song J, Ding H, Han W et al. A motion compensation method for bi-plane robot-assisted internal fixation surgery of a femur neck fracture[J]. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 230, 942-948(2016).
[69] Li J Y, Huang L, Zhou W Y et al. Evaluation of a new spinal surgical robotic system of Kirschner wire placement for lumbar fusion: a multi-centre, randomised controlled clinical study[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 17, e2207(2021).
[70] Li L, Wu J L, Ding H et al. An “eye-in-body” integrated surgery robot system for stereotactic surgery[J]. International Journal of Computer Assisted Radiology and Surgery, 14, 2123-2135(2019).
[71] Yoo H, Sim T. Automated machine learning (AutoML)-based surface registration methodology for image-guided surgical navigation system[J]. Medical Physics, 49, 4845-4860(2022).
[72] Xu L S, Zhang H R, Wang J L et al. Information loss challenges in surgical navigation systems: from information fusion to AI-based approaches[J]. Information Fusion, 92, 13-36(2023).
[73] Dai H D, Zeng Y D, Wang Z W et al. Prior knowledge-based optimization method for the reconstruction model of multicamera optical tracking system[J]. IEEE Transactions on Automation Science and Engineering, 17, 2074-2084(2020).
[74] Pfeiffer J H, Borbáth Á, Dietz C et al. A new module combining two tracking cameras to expand the workspace of surgical navigation systems[C], 477-482(2017).
[75] Wang J L, Meng M Q H, Ren H L. Towards occlusion-free surgical instrument tracking: a modular monocular approach and an agile calibration method[J]. IEEE Transactions on Automation Science and Engineering, 12, 588-595(2015).
[76] Wang J L, Song S, Ren H L et al. Surgical instrument tracking by multiple monocular modules and a sensor fusion approach[J]. IEEE Transactions on Automation Science and Engineering, 16, 629-639(2019).
[77] Vaccarella A, De Momi E, Enquobahrie A et al. Unscented Kalman filter based sensor fusion for robust optical and electromagnetic tracking in surgical navigation[J]. IEEE Transactions on Instrumentation and Measurement, 62, 2067-2081(2013).
[78] Enayati N, De Momi E, Ferrigno G. A quaternion-based unscented Kalman filter for robust optical/inertial motion tracking in computer-assisted surgery[J]. IEEE Transactions on Instrumentation and Measurement, 64, 2291-2301(2015).
[79] Wang J L, Qi L, Meng M Q H et al[M]. Robot-assisted occlusion avoidance for surgical instrument optical tracking system(2015).
[80] Meng Y Y, You Y G, Geng P X et al. Development of an intra-operative active navigation system for robot-assisted surgery[C], 1755-1760(2022).
[81] Zhao P. Research on optical and inertial combined positioning method in surgical navigation system[D](2015).
[82] Meng F L, Zhai F W, Zeng B W et al. An automatic markerless registration method for neurosurgical robotics based on an optical camera[J]. International Journal of Computer Assisted Radiology and Surgery, 13, 253-265(2018).
[83] Franz A M, Haidegger T, Birkfellner W et al. Electromagnetic tracking in medicine: a review of technology, validation, and applications[J]. IEEE Transactions on Medical Imaging, 33, 1702-1725(2014).
[84] Kassahun Y, Yu B B, Tibebu A T et al. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions[J]. International Journal of Computer Assisted Radiology and Surgery, 11, 553-568(2016).
[85] Mascagni P, Alapatt D, Sestini L et al. Computer vision in surgery: from potential to clinical value[J]. NPJ Digital Medicine, 5, 1-9(2022).
[86] Haque A, Milstein A, Li F F. Illuminating the dark spaces of healthcare with ambient intelligence[J]. Nature, 585, 193-202(2020).
[87] Li L, Feng P F, Ding H et al. A preliminary exploration to make stereotactic surgery robots aware of the semantic 2D/3D working scene[J]. IEEE Transactions on Medical Robotics and Bionics, 4, 17-27(2022).
[88] Feng P F, Li L, Ding H et al. Head pose estimation of patients with monocular vision for surgery robot based on deep learning[J]. Chinese Journal of Biomedical Engineering, 41, 537-546(2022).
[89] Qi H, Feng Y, Zhang H et al. Research progress of fiber Bragg grating sensor in minimally invasive medical treatment[J]. Laser & Optoelectronics Progress, 59, 1300004(2022).
[90] Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 15, 1263-1276(1997).
[91] Park Y L, Elayaperumal S, Daniel B et al. Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions[J]. IEEE/ASME Transactions on Mechatronics, 15, 906-915(2010).
[92] Kim J S, Chatrasingh M, Kim S et al. Fiber Bragg grating based needle shape sensing for needle steering system: evaluation in inhomogeneous tissue[C](2017).
[93] Zhang L F, Li C L, Dong H J et al. Fiber Bragg grating-based sensor system for sensing the shape of flexible needles[J]. Measurement, 206, 112251(2023).
[94] Chen W, Gassino R, Liu Y et al. Performance assessment of FBG temperature sensors for laser ablation of tumors[C], 324-328(2015).
[95] Sametova A, Kurmashev S, Ashikbayeva Z et al. Optical fiber distributed sensing network for thermal mapping in radiofrequency ablation neighboring a blood vessel[J]. Biosensors, 12, 1150(2022).
[96] Bianchi L, Mooney R, Cornejo Y et al. Fiber Bragg grating sensors-based thermometry of gold nanorod-enhanced photothermal therapy in tumor model[J]. IEEE Sensors Journal, 22, 11297-11306(2021).
[97] He X C, Handa J, Gehlbach P et al. A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery[J]. IEEE Transactions on Bio-Medical Engineering, 61, 522-534(2014).
[98] Du C J, Wei D H, Wang H et al. Development of the X-Perce: a universal FBG-based force sensing kit for laparoscopic surgical robot[J]. IEEE Transactions on Medical Robotics and Bionics, 4, 183-193(2022).
[99] Li J H, Wang C Y, Mao Z Y et al. A compact FBG-based triaxial force sensor with parallel helical beams for robotic-assisted surgery[J]. IEEE Transactions on Instrumentation and Measurement, 71, 7503709(2022).
[100] Gao A Z, Liu N, Zhang H J et al. Spiral FBG sensors-based contact detection for confocal laser endomicroscopy[J]. Biosensors and Bioelectronics, 170, 112653(2020).
[101] Maier-Hein L, Mountney P, Bartoli A et al. Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery[J]. Medical Image Analysis, 17, 974-996(2013).
[102] Mahmoud N, Collins T, Hostettler A et al. Live tracking and dense reconstruction for handheld monocular endoscopy[J]. IEEE Transactions on Medical Imaging, 38, 79-89(2019).
[103] Drexler W, Liu M Y, Kumar A et al. Optical coherence tomography today: speed, contrast, and multimodality[J]. Journal of Biomedical Optics, 19, 071412(2014).
[104] Yang X F, Liu Z X, Wang P. Confocal endoscopic microscopy and its applications[J]. Chinese Journal of Lasers, 49, 1907002(2022).
[105] El-Haddad M T, Tao Y K. Advances in intraoperative optical coherence tomography for surgical guidance[J]. Current Opinion in Biomedical Engineering, 3, 37-48(2017).
[106] Lin L, Wang L V. The emerging role of photoacoustic imaging in clinical oncology[J]. Nature Reviews Clinical Oncology, 19, 365-384(2022).
[107] Zuo C, Qian J M, Feng S J et al. Deep learning in optical metrology: a review[J]. Light: Science & Applications, 11, 1-54(2022).
[108] Lo Presti D, Massaroni C, Jorge Leitão C S et al. Fiber Bragg gratings for medical applications and future challenges: a review[J]. IEEE Access, 8, 156863-156888(2020).
[109] Niemz M H. Light acting on matter[M]. Niemz M H. Laser-tissue interactions, 45-152(2019).
[110] Schena E, Saccomandi P, Fong Y. Laser ablation for cancer: past, present and future[J]. Journal of Functional Biomaterials, 8, 19(2017).
[111] Missios S, Bekelis K, Barnett G H. Renaissance of laser interstitial thermal ablation[J]. Neurosurgical Focus, 38, E13(2015).
[112] Pacella C M, Jiang T. Experimental data and clinical studies of laser ablation[M]. Pacella C M, Jiang T, Mauri G. Image-guided laser ablation, 19-30(2020).
[113] Pacella C M, Breschi L, Bottacci D et al. Physical principles of laser ablation[M]. Pacella C M, Jiang T, Mauri G. Image-guided laser ablation, 7-18(2020).
[114] Fu B, Zhao X L, Zhang H et al. Application and progress of laser technology for thrombus ablation[J]. Chinese Journal of Lasers, 49, 1907001(2022).
[115] Leesar M A, Feldman M D. Thrombosis and myocardial infarction: the role of bioresorbable scaffolds[J]. The Journal of Cardiovascular Aging, 3, 7(2023).
[116] Rahmathulla G, Recinos P F, Kamian K et al. MRI-guided laser interstitial thermal therapy in neuro-oncology: a review of its current clinical applications[J]. Oncology, 87, 67-82(2014).
[117] Blackwell J, Kraśny M J, O'Brien A et al. Proton resonance frequency shift thermometry: a review of modern clinical practices[J]. Journal of Magnetic Resonance Imaging, 55, 389-403(2022).
[118] Bown S G. Phototherapy of tumors[J]. World Journal of Surgery, 7, 700-709(1983).
[119] Sugiyama K, Sakai T, Fujishima I et al. Stereotactic interstitial laser-hyperthermia using Nd-YAG laser[J]. Stereotactic and Functional Neurosurgery, 54/55, 501-505(1990).
[120] Banerjee C, Snelling B, Berger M H et al. The role of magnetic resonance-guided laser ablation in neurooncology[J]. British Journal of Neurosurgery, 29, 192-196(2015).
[121] Montemurro N, Anania Y, Cagnazzo F et al. Survival outcomes in patients with recurrent glioblastoma treated with laser interstitial thermal therapy (LITT): a systematic review[J]. Clinical Neurology and Neurosurgery, 195, 105942(2020).
[122] Shimamoto S, Wu C Y, Sperling M. Laser interstitial thermal therapy in drug-resistant epilepsy[J]. Current Opinion in Neurology, 32, 237-245(2019).
[123] Cesareo R, Manfrini S, Pasqualini V et al. Laser ablation versus radiofrequency ablation for thyroid nodules: 12-month results of a randomized trial (LARA II study)[J]. The Journal of Clinical Endocrinology & Metabolism, 106, 1692-1701(2021).
[124] Sartori S, Di Vece F, Ermili F et al. Laser ablation of liver tumors: an ancillary technique, or an alternative to radiofrequency and microwave?[J]. World Journal of Radiology, 9, 91-96(2017).
[125] Jiang T, Zhao Q. Lung tumors laser ablation[M]. Pacella C M, Jiang T, Mauri G. Image-guided laser ablation, 107-115(2020).
[126] Kerbage Y, Betrouni N, Collinet P et al. Laser interstitial thermotherapy application for breast surgery: current situation and new trends[J]. The Breast, 33, 145-152(2017).
[127] Lee T, Mendhiratta N, Sperling D et al. Focal laser ablation for localized prostate cancer: principles, clinical trials, and our initial experience[J]. Reviews in Urology, 16, 55-66(2014).
[128] Tombesi P, Di Vece F, Sartori S. Radiofrequency, microwave, and laser ablation of liver tumors: time to move toward a tailored ablation technique?[J]. Hepatoma Research, 1, 52(2015).
[129] Vakharia V N, Sparks R, Li K et al. Automated trajectory planning for laser interstitial thermal therapy in mesial temporal lobe epilepsy[J]. Epilepsia, 59, 814-824(2018).
[130] Scorza D, El Hadji S, Cortés C et al. Surgical planning assistance in keyhole and percutaneous surgery: a systematic review[J]. Medical Image Analysis, 67, 101820(2021).
[131] Pinzi M, Vakharia V N, Hwang B Y et al. Computer assisted planning for curved laser interstitial thermal therapy[J]. IEEE Transactions on Bio-Medical Engineering, 68, 2957-2964(2021).
[132] Blauth S, Hübner F, Leithäuser C et al. Mathematical modeling and simulation of laser-induced thermotherapy for the treatment of liver tumors[C], 3-23(2022).
[133] Fahrenholtz S J, Madankan R, Danish S et al. Theoretical model for laser ablation outcome predictions in brain: calibration and validation on clinical MR thermometry images[J]. International Journal of Hyperthermia, 34, 101-111(2018).
[134] Liang L B, Gao T T, Ding H et al. A distribution-based method for thermal damage model analysis and optimization in brain laser interstitial thermal therapy[J]. Proceedings of SPIE, 12032, 120323S(2022).
[135] Hori Y S, González Martínez J A, Barnett G H. Robotics in laser ablation procedures[M]. González Martínez J A, Cardinale F. Robotics in neurosurgery, 131-140(2022).
[136] Geoghegan R, Ter Haar G, Nightingale K et al. Methods of monitoring thermal ablation of soft tissue tumors: a comprehensive review[J]. Medical Physics, 49, 769-791(2022).
[137] Alpers J, Reimert D L, Rötzer M et al. 2. 5D thermometry maps for MRI-guided tumor ablation[M]. de Bruijne M, Cattin P C, Cotin S, et al. Medical image computing and computer-assisted intervention-MICCAI 2021. Lecture notes in computer science, 12904, 311-320(2021).
[138] Grundfest W S, Litvack F, Forrester J S et al. Laser ablation of human atherosclerotic plaque without adjacent tissue injury[J]. Journal of the American College of Cardiology, 5, 929-933(1985).
[139] Janis A D, Buckley L A, Gregory K W. Laser thrombolysis in an in-vitro model[J]. Proceedings of SPIE, 3907, 582-588(2000).
[140] Papaioannou T, Levisman J, Sorokoumov O et al. Particulate debris analysis during excimer laser thrombolysis: an in-vitro study[J]. Proceedings of SPIE, 4609, 404-412(2002).
[141] Boersma D, Smulders D L J, Bakker O J et al. Endovenous laser ablation of insufficient perforating veins: energy is key to success[J]. Vascular, 24, 144-149(2016).
[142] Wallace T, El-Sheikha J, Nandhra S et al. Long-term outcomes of endovenous laser ablation and conventional surgery for great saphenous varicose veins[J]. British Journal of Surgery, 105, 1759-1767(2018).
[143] Ginsburg R, Kim D S, Guthaner D et al. Salvage of an ischemic limb by laser angioplasty: description of a new technique[J]. Clinical Cardiology, 7, 54-58(1984).
[144] Kennedy J W, Ritchie J L, Davis K B et al. Western Washington randomized trial of intracoronary streptokinase in acute myocardial infarction[J]. The New England Journal of Medicine, 309, 1477-1482(1983).
[145] Pradhan A, Bhandari M, Snigdha B. Lasers for the treatment of coronary artery disease: an update[J]. Heart India, 8, 3(2020).
[146] Herzog A, Bogdan S, Glikson M et al. Selective tissue ablation using laser radiation at 355 nm in lead extraction by a hybrid catheter; a preliminary report[J]. Lasers in Surgery and Medicine, 48, 281-287(2016).
[147] Shibata N, Takagi K, Morishima I et al. The impact of the excimer laser on myocardial salvage in ST-elevation acute myocardial infarction via nuclear scintigraphy[J]. The International Journal of Cardiovascular Imaging, 36, 161-170(2020).
[148] Herzog A, Oszkinis G, Planer D et al. Atherectomy using a solid-state laser at 355 nm wavelength[J]. Journal of Biophotonics, 10, 1271-1278(2017).
[149] Berndt R, Rusch R, Hummitzsch L et al. Development of a new catheter prototype for laser thrombolysis under guidance of optical coherence tomography (OCT): validation of feasibility and efficacy in a preclinical model[J]. Journal of Thrombosis and Thrombolysis, 43, 352-360(2017).
[150] Singh S, Melnik R. Thermal ablation of biological tissues in disease treatment: a review of computational models and future directions[J]. Electromagnetic Biology and Medicine, 39, 49-88(2020).
[151] Pang S M, Kapur A, Zhou K R et al. Nanoparticle-assisted, image-guided laser interstitial thermal therapy for cancer treatment[J]. Nanomedicine and Nanobiotechnology, 14, e1826(2022).
Get Citation
Copy Citation Text
Libin Liang, Liang Li, Tingting Gao, Guangzhi Wang, Hui Ding, Mingxi Wan, Zhenxi Zhang. Research Progress of Intelligent Optic-Assisted Technology and Laser Ablation in Minimally Invasive Intervention[J]. Chinese Journal of Lasers, 2023, 50(15): 1507201
Category: Optical Diagnostics and Therapy
Received: Feb. 1, 2023
Accepted: Apr. 13, 2023
Published Online: Jul. 11, 2023
The Author Email: Liang Libin (lianglibin@xjtu.edu.cn)