Chinese Journal of Lasers, Volume. 50, Issue 15, 1507201(2023)

Research Progress of Intelligent Optic-Assisted Technology and Laser Ablation in Minimally Invasive Intervention

Libin Liang1、*, Liang Li2, Tingting Gao3, Guangzhi Wang3, Hui Ding3, Mingxi Wan1, and Zhenxi Zhang4
Author Affiliations
  • 1Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi an Jiaotong University, Xi an 710049, Shaanxi, China
  • 2School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211100, Jiangsu, China
  • 3Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
  • 4Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi an Jiaotong University, Xi an 710049, Shaanxi, China
  • show less
    References(151)

    [1] Cleary K, Peters T M. Image-guided interventions: technology review and clinical applications[J]. Annual Review of Biomedical Engineering, 12, 119-142(2010).

    [2] Chu K F, Dupuy D E. Thermal ablation of tumours: biological mechanisms and advances in therapy[J]. Nature Reviews Cancer, 14, 199-208(2014).

    [3] Yun S H, Kwok S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 1, 1-16(2017).

    [4] Li Y X, Hu C Q, Ma L F et al. Research progress in intelligent and precise optical diagnosis and treatment technology[J]. Chinese Journal of Lasers, 48, 1507002(2021).

    [5] Birlo M, Edwards P J E, Clarkson M et al. Utility of optical see-through head mounted displays in augmented reality-assisted surgery: a systematic review[J]. Medical Image Analysis, 77, 102361(2022).

    [6] Barcali E, Iadanza E, Manetti L et al. Augmented reality in surgery: a scoping review[J]. Applied Sciences, 12, 6890(2022).

    [7] Gholizadeh M, Bakhshali M A, Mazlooman S R et al. Minimally invasive and invasive liver surgery based on augmented reality training: a review of the literature[J]. Journal of Robotic Surgery, 17, 753-763(2023).

    [8] Quero G, Lapergola A, Soler L et al. Virtual and augmented reality in oncologic liver surgery[J]. Surgical Oncology Clinics of North America, 28, 31-44(2019).

    [9] Meola A, Cutolo F, Carbone M et al. Augmented reality in neurosurgery: a systematic review[J]. Neurosurgical Review, 40, 537-548(2017).

    [10] Contreras López W O, Navarro P A, Crispin S. Intraoperative clinical application of augmented reality in neurosurgery: a systematic review[J]. Clinical Neurology and Neurosurgery, 177, 6-11(2019).

    [11] Jud L, Fotouhi J, Andronic O et al. Applicability of augmented reality in orthopedic surgery: a systematic review[J]. BMC Musculoskeletal Disorders, 21, 103(2020).

    [12] Sutherland C, Hashtrudi-Zaad K, Sellens R et al. An augmented reality haptic training simulator for spinal needle procedures[J]. IEEE Transactions on Bio-Medical Engineering, 60, 3009-3018(2013).

    [13] Auloge P, Cazzato R L, Ramamurthy N et al. Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial[J]. European Spine Journal, 29, 1580-1589(2020).

    [14] Bernhardt S, Nicolau S A, Soler L et al. The status of augmented reality in laparoscopic surgery as of 2016[J]. Medical Image Analysis, 37, 66-90(2017).

    [15] Hallet J, Soler L, Diana M et al. Trans-thoracic minimally invasive liver resection guided by augmented reality[J]. Journal of the American College of Surgeons, 220, e55-e60(2015).

    [16] Thompson S, Schneider C, Bosi M et al. In vivo estimation of target registration errors during augmented reality laparoscopic surgery[J]. International Journal of Computer Assisted Radiology and Surgery, 13, 865-874(2018).

    [17] Coelho G, Trigo L, Faig F et al. The potential applications of augmented reality in fetoscopic surgery for antenatal treatment of myelomeningocele[J]. World Neurosurgery, 159, 27-32(2022).

    [18] Mela C A, Lemmer D P, Bao F S et al. Real-time dual-modal vein imaging system[J]. International Journal of Computer Assisted Radiology and Surgery, 14, 203-213(2019).

    [19] Xing S W, Ding H, Wang G Z. A projection-augmented system for in situ projection for mobile C-arms[J]. Beijing Biomedical Engineering, 38, 551-559(2019).

    [20] Wu B X, Liu P, Xiong C et al. Stereotactic co-axial projection imaging for augmented reality neuronavigation: a proof-of-concept study[J]. Quantitative Imaging in Medicine and Surgery, 12, 3792-3802(2022).

    [21] Zeng B W, Meng F L, Ding H et al. A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation[J]. International Journal of Computer Assisted Radiology and Surgery, 12, 1355-1368(2017).

    [22] Wen R, Chui C K, Ong S H et al. Projection-based visual guidance for robot-aided RF needle insertion[J]. International Journal of Computer Assisted Radiology and Surgery, 8, 1015-1025(2013).

    [23] Gao Y, Zhao Y Y, Xie L et al. A projector-based augmented reality navigation system for computer-assisted surgery[J]. Sensors, 21, 2931(2021).

    [24] Gavaghan K, Oliveira-Santos T, Peterhans M et al. Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies[J]. International Journal of Computer Assisted Radiology and Surgery, 7, 547-556(2012).

    [25] Sebeom P, Shokhrukh B, Yosoon C. Review of Microsoft HoloLens applications over the past five years[J]. Applied Sciences, 11, 7259(2021).

    [26] Cheng D W, Wang Q W, Liu Y et al. Design and manufacture AR head-mounted displays: a review and outlook[J]. Light: Advanced Manufacturing, 2, 336(2021).

    [27] Luo X H, Dong S Y, Wang Z S et al. Research progress of metasurface-based VR/AR display technology[J]. Laser & Optoelectronics Progress, 59, 2011002(2022).

    [28] Xiong J H, Hsiang E L, He Z Q et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives[J]. Light: Science & Applications, 10, 1-30(2021).

    [29] Gsaxner C, Li J N, Pepe A et al. The HoloLens in medicine: a systematic review and taxonomy[J]. Medical Image Analysis, 85, 102757(2023).

    [30] Ahmad H S, Yoon J W. Intra-operative wearable visualization in spine surgery: past, present, and future[J]. Journal of Spine Surgery, 8, 132-138(2022).

    [31] Laverdière C, Corban J, Khoury J et al. Augmented reality in orthopaedics: a systematic review and a window on future possibilities[J]. The Bone & Joint Journal, 101-B, 1479-1488(2019).

    [32] Verhey J T, Haglin J M, Verhey E M et al. Virtual, augmented, and mixed reality applications in orthopedic surgery[J]. The International Journal of Medical Robotics+Computer Assisted Surgery: MRCAS, 16, e2067(2020).

    [33] Burström G, Persson O, Edström E et al. Augmented reality navigation in spine surgery: a systematic review[J]. Acta Neurochirurgica, 163, 843-852(2021).

    [34] Doughty M, Ghugre N, Wright G. Augmenting performance: a systematic review of optical see-through head-mounted displays in surgery[J]. Journal of Imaging, 8, 203(2022).

    [35] Liebmann F, Roner S, von Atzigen M et al. Pedicle screw navigation using surface digitization on the Microsoft HoloLens[J]. International Journal of Computer Assisted Radiology and Surgery, 14, 1157-1165(2019).

    [36] Dennler C, Jaberg L, Spirig J et al. Augmented reality-based navigation increases precision of pedicle screw insertion[J]. Journal of Orthopaedic Surgery and Research, 15, 174(2020).

    [37] Li Y, Chen X L, Wang N et al. A wearable mixed-reality holographic computer for guiding external ventricular drain insertion at the bedside[J]. Journal of Neurosurgery, 131, 1599-1606(2019).

    [38] Lareyre F, Chaudhuri A, Adam C et al. Applications of head-mounted displays and smart glasses in vascular surgery[J]. Annals of Vascular Surgery, 75, 497-512(2021).

    [39] Williams M A, McVeigh J, Handa A I et al. Augmented reality in surgical training: a systematic review[J]. Postgraduate Medical Journal, 96, 537-542(2020).

    [40] Unberath M, Fotouhi J, Hajek J et al. Augmented reality-based feedback for technician-in-the-loop C-arm repositioning[J]. Healthcare Technology Letters, 5, 143-147(2018).

    [41] Liao H E, Inomata T, Sakuma I et al. 3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay[J]. IEEE Transactions on Bio-Medical Engineering, 57, 1476-1486(2010).

    [42] Ma L F, Jiang W P, Zhang B Y et al. Augmented reality surgical navigation with accurate CBCT-patient registration for dental implant placement[J]. Medical & Biological Engineering & Computing, 57, 47-57(2019).

    [43] Chen F, Cui X W, Han B X et al. Augmented reality navigation for minimally invasive knee surgery using enhanced arthroscopy[J]. Computer Methods and Programs in Biomedicine, 201, 105952(2021).

    [44] Zhang X R, Chen G W, Liao H E. High-quality see-through surgical guidance system using enhanced 3-D autostereoscopic augmented reality[J]. IEEE Transactions on Bio-Medical Engineering, 64, 1815-1825(2017).

    [45] Brunet J N, Mendizabal A, Petit A et al. Physics-based deep neural network for augmented reality during liver surgery[M]. Shen D G, Liu T M, Peters T M, et al. Medical image computing and computer assisted intervention-MICCAI 2019. Lecture notes in computer science, 11768, 137-145(2019).

    [46] Doughty M, Ghugre N R. HMD-EgoPose: head-mounted display-based egocentric marker-less tool and hand pose estimation for augmented surgical guidance[J]. International Journal of Computer Assisted Radiology and Surgery, 17, 2253-2262(2022).

    [47] Doughty M, Singh K, Ghugre N R. SurgeonAssist-net: towards context-aware head-mounted display-based augmented reality for surgical guidance[M]. de Bruijne M, Cattin P C, Cotin S, et al. Medical image computing and computer assisted intervention-MICCAI 2021. Lecture notes in computer science, 12904, 667-677(2021).

    [48] Eckert M, Volmerg J S, Friedrich C M. Augmented reality in medicine: systematic and bibliographic review[J]. JMIR MHealth and UHealth, 7, e10967(2019).

    [49] Condino S, Carbone M, Piazza R et al. Perceptual limits of optical see-through visors for augmented reality guidance of manual tasks[J]. IEEE Transactions on Bio-Medical Engineering, 67, 411-419(2020).

    [50] Edgcumbe P, Pratt P, Yang G Z et al. Pico Lantern: surface reconstruction and augmented reality in laparoscopic surgery using a pick-up laser projector[J]. Medical Image Analysis, 25, 95-102(2015).

    [51] Golse N, Petit A, Lewin M et al. Augmented reality during open liver surgery using a markerless non-rigid registration system[J]. Journal of Gastrointestinal Surgery, 25, 662-671(2021).

    [52] Pfeiffer M, Riediger C, Leger S et al. Non-rigid volume to surface registration using a data-driven biomechanical model[M]. Martel A L, Abolmaesumi P, Stoyanov D, et al. Medical image computing and computer assisted intervention-MICCAI 2020. Lecture notes in computer science, 12264, 724-734(2020).

    [53] Liu K, Hua J Y, Chen L S et al. Present situation and prospect of glasses-free augmented reality 3D display[J]. Laser & Optoelectronics Progress, 59, 2011004(2022).

    [54] Streeter S S, Hebert K A, Bateman L M et al. Current and future applications of fluorescence guidance in orthopaedic surgery[J]. Molecular Imaging and Biology, 25, 46-57(2023).

    [55] Sajedi S, Sabet H, Choi H S. Intraoperative biophotonic imaging systems for image-guided interventions[J]. Nanophotonics, 8, 99-116(2019).

    [56] Zhou Z T, Wu B, Duan J et al. Optical surgical instrument tracking system based on the principle of stereo vision[J]. Journal of Biomedical Optics, 22, 065005(2017).

    [57] Lin Q Y, Cai K, Yang R Q et al. Development and validation of a near-infrared optical system for tracking surgical instruments[J]. Journal of Medical Systems, 40, 107(2016).

    [58] Sorriento A, Porfido M B, Mazzoleni S et al. Optical and electromagnetic tracking systems for biomedical applications: a critical review on potentialities and limitations[J]. IEEE Reviews in Biomedical Engineering, 13, 212-232(2020).

    [59] Minchev G, Kronreif G, Martínez-Moreno M et al. A novel miniature robotic guidance device for stereotactic neurosurgical interventions: preliminary experience with the iSYS1 robot[J]. Journal of Neurosurgery, 126, 985-996(2017).

    [60] Smith J A, Jivraj J, Wong R et al. 30 years of neurosurgical robots: review and trends for manipulators and associated navigational systems[J]. Annals of Biomedical Engineering, 44, 836-846(2016).

    [61] Lefranc M, Peltier J. Evaluation of the ROSATM Spine robot for minimally invasive surgical procedures[J]. Expert Review of Medical Devices, 13, 899-906(2016).

    [62] Khan A, Meyers J E, Siasios I et al. Next-generation robotic spine surgery: first report on feasibility, safety, and learning curve[J]. Operative Neurosurgery, 17, 61-69(2019).

    [63] Tian W, Han X G, Liu B et al. A robot-assisted surgical system using a force-image control method for pedicle screw insertion[J]. PLoS One, 9, e86346(2014).

    [64] Lachenmayer A, Tinguely P, Maurer M H et al. Stereotactic image-guided microwave ablation of hepatocellular carcinoma using a computer-assisted navigation system[J]. Liver International, 39, 1975-1985(2019).

    [65] Min Z, Ren H L, Meng M Q H. Estimation of surgical tool-tip tracking error distribution in coordinate reference frame involving pivot calibration uncertainty[J]. Healthcare Technology Letters, 4, 193-198(2017).

    [66] Yaniv Z. Which pivot calibration?[J]. Proceedings of SPIE, 9415, 941527(2015).

    [67] Gerber N, Gavaghan K A, Bell B J et al. High-accuracy patient-to-image registration for the facilitation of image-guided robotic microsurgery on the head[J]. IEEE Transactions on Bio-Medical Engineering, 60, 960-968(2013).

    [68] Song J, Ding H, Han W et al. A motion compensation method for bi-plane robot-assisted internal fixation surgery of a femur neck fracture[J]. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 230, 942-948(2016).

    [69] Li J Y, Huang L, Zhou W Y et al. Evaluation of a new spinal surgical robotic system of Kirschner wire placement for lumbar fusion: a multi-centre, randomised controlled clinical study[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 17, e2207(2021).

    [70] Li L, Wu J L, Ding H et al. An “eye-in-body” integrated surgery robot system for stereotactic surgery[J]. International Journal of Computer Assisted Radiology and Surgery, 14, 2123-2135(2019).

    [71] Yoo H, Sim T. Automated machine learning (AutoML)-based surface registration methodology for image-guided surgical navigation system[J]. Medical Physics, 49, 4845-4860(2022).

    [72] Xu L S, Zhang H R, Wang J L et al. Information loss challenges in surgical navigation systems: from information fusion to AI-based approaches[J]. Information Fusion, 92, 13-36(2023).

    [73] Dai H D, Zeng Y D, Wang Z W et al. Prior knowledge-based optimization method for the reconstruction model of multicamera optical tracking system[J]. IEEE Transactions on Automation Science and Engineering, 17, 2074-2084(2020).

    [74] Pfeiffer J H, Borbáth Á, Dietz C et al. A new module combining two tracking cameras to expand the workspace of surgical navigation systems[C], 477-482(2017).

    [75] Wang J L, Meng M Q H, Ren H L. Towards occlusion-free surgical instrument tracking: a modular monocular approach and an agile calibration method[J]. IEEE Transactions on Automation Science and Engineering, 12, 588-595(2015).

    [76] Wang J L, Song S, Ren H L et al. Surgical instrument tracking by multiple monocular modules and a sensor fusion approach[J]. IEEE Transactions on Automation Science and Engineering, 16, 629-639(2019).

    [77] Vaccarella A, De Momi E, Enquobahrie A et al. Unscented Kalman filter based sensor fusion for robust optical and electromagnetic tracking in surgical navigation[J]. IEEE Transactions on Instrumentation and Measurement, 62, 2067-2081(2013).

    [78] Enayati N, De Momi E, Ferrigno G. A quaternion-based unscented Kalman filter for robust optical/inertial motion tracking in computer-assisted surgery[J]. IEEE Transactions on Instrumentation and Measurement, 64, 2291-2301(2015).

    [79] Wang J L, Qi L, Meng M Q H et al[M]. Robot-assisted occlusion avoidance for surgical instrument optical tracking system(2015).

    [80] Meng Y Y, You Y G, Geng P X et al. Development of an intra-operative active navigation system for robot-assisted surgery[C], 1755-1760(2022).

    [81] Zhao P. Research on optical and inertial combined positioning method in surgical navigation system[D](2015).

    [82] Meng F L, Zhai F W, Zeng B W et al. An automatic markerless registration method for neurosurgical robotics based on an optical camera[J]. International Journal of Computer Assisted Radiology and Surgery, 13, 253-265(2018).

    [83] Franz A M, Haidegger T, Birkfellner W et al. Electromagnetic tracking in medicine: a review of technology, validation, and applications[J]. IEEE Transactions on Medical Imaging, 33, 1702-1725(2014).

    [84] Kassahun Y, Yu B B, Tibebu A T et al. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions[J]. International Journal of Computer Assisted Radiology and Surgery, 11, 553-568(2016).

    [85] Mascagni P, Alapatt D, Sestini L et al. Computer vision in surgery: from potential to clinical value[J]. NPJ Digital Medicine, 5, 1-9(2022).

    [86] Haque A, Milstein A, Li F F. Illuminating the dark spaces of healthcare with ambient intelligence[J]. Nature, 585, 193-202(2020).

    [87] Li L, Feng P F, Ding H et al. A preliminary exploration to make stereotactic surgery robots aware of the semantic 2D/3D working scene[J]. IEEE Transactions on Medical Robotics and Bionics, 4, 17-27(2022).

    [88] Feng P F, Li L, Ding H et al. Head pose estimation of patients with monocular vision for surgery robot based on deep learning[J]. Chinese Journal of Biomedical Engineering, 41, 537-546(2022).

    [89] Qi H, Feng Y, Zhang H et al. Research progress of fiber Bragg grating sensor in minimally invasive medical treatment[J]. Laser & Optoelectronics Progress, 59, 1300004(2022).

    [90] Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 15, 1263-1276(1997).

    [91] Park Y L, Elayaperumal S, Daniel B et al. Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions[J]. IEEE/ASME Transactions on Mechatronics, 15, 906-915(2010).

    [92] Kim J S, Chatrasingh M, Kim S et al. Fiber Bragg grating based needle shape sensing for needle steering system: evaluation in inhomogeneous tissue[C](2017).

    [93] Zhang L F, Li C L, Dong H J et al. Fiber Bragg grating-based sensor system for sensing the shape of flexible needles[J]. Measurement, 206, 112251(2023).

    [94] Chen W, Gassino R, Liu Y et al. Performance assessment of FBG temperature sensors for laser ablation of tumors[C], 324-328(2015).

    [95] Sametova A, Kurmashev S, Ashikbayeva Z et al. Optical fiber distributed sensing network for thermal mapping in radiofrequency ablation neighboring a blood vessel[J]. Biosensors, 12, 1150(2022).

    [96] Bianchi L, Mooney R, Cornejo Y et al. Fiber Bragg grating sensors-based thermometry of gold nanorod-enhanced photothermal therapy in tumor model[J]. IEEE Sensors Journal, 22, 11297-11306(2021).

    [97] He X C, Handa J, Gehlbach P et al. A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery[J]. IEEE Transactions on Bio-Medical Engineering, 61, 522-534(2014).

    [98] Du C J, Wei D H, Wang H et al. Development of the X-Perce: a universal FBG-based force sensing kit for laparoscopic surgical robot[J]. IEEE Transactions on Medical Robotics and Bionics, 4, 183-193(2022).

    [99] Li J H, Wang C Y, Mao Z Y et al. A compact FBG-based triaxial force sensor with parallel helical beams for robotic-assisted surgery[J]. IEEE Transactions on Instrumentation and Measurement, 71, 7503709(2022).

    [100] Gao A Z, Liu N, Zhang H J et al. Spiral FBG sensors-based contact detection for confocal laser endomicroscopy[J]. Biosensors and Bioelectronics, 170, 112653(2020).

    [101] Maier-Hein L, Mountney P, Bartoli A et al. Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery[J]. Medical Image Analysis, 17, 974-996(2013).

    [102] Mahmoud N, Collins T, Hostettler A et al. Live tracking and dense reconstruction for handheld monocular endoscopy[J]. IEEE Transactions on Medical Imaging, 38, 79-89(2019).

    [103] Drexler W, Liu M Y, Kumar A et al. Optical coherence tomography today: speed, contrast, and multimodality[J]. Journal of Biomedical Optics, 19, 071412(2014).

    [104] Yang X F, Liu Z X, Wang P. Confocal endoscopic microscopy and its applications[J]. Chinese Journal of Lasers, 49, 1907002(2022).

    [105] El-Haddad M T, Tao Y K. Advances in intraoperative optical coherence tomography for surgical guidance[J]. Current Opinion in Biomedical Engineering, 3, 37-48(2017).

    [106] Lin L, Wang L V. The emerging role of photoacoustic imaging in clinical oncology[J]. Nature Reviews Clinical Oncology, 19, 365-384(2022).

    [107] Zuo C, Qian J M, Feng S J et al. Deep learning in optical metrology: a review[J]. Light: Science & Applications, 11, 1-54(2022).

    [108] Lo Presti D, Massaroni C, Jorge Leitão C S et al. Fiber Bragg gratings for medical applications and future challenges: a review[J]. IEEE Access, 8, 156863-156888(2020).

    [109] Niemz M H. Light acting on matter[M]. Niemz M H. Laser-tissue interactions, 45-152(2019).

    [110] Schena E, Saccomandi P, Fong Y. Laser ablation for cancer: past, present and future[J]. Journal of Functional Biomaterials, 8, 19(2017).

    [111] Missios S, Bekelis K, Barnett G H. Renaissance of laser interstitial thermal ablation[J]. Neurosurgical Focus, 38, E13(2015).

    [112] Pacella C M, Jiang T. Experimental data and clinical studies of laser ablation[M]. Pacella C M, Jiang T, Mauri G. Image-guided laser ablation, 19-30(2020).

    [113] Pacella C M, Breschi L, Bottacci D et al. Physical principles of laser ablation[M]. Pacella C M, Jiang T, Mauri G. Image-guided laser ablation, 7-18(2020).

    [114] Fu B, Zhao X L, Zhang H et al. Application and progress of laser technology for thrombus ablation[J]. Chinese Journal of Lasers, 49, 1907001(2022).

    [115] Leesar M A, Feldman M D. Thrombosis and myocardial infarction: the role of bioresorbable scaffolds[J]. The Journal of Cardiovascular Aging, 3, 7(2023).

    [116] Rahmathulla G, Recinos P F, Kamian K et al. MRI-guided laser interstitial thermal therapy in neuro-oncology: a review of its current clinical applications[J]. Oncology, 87, 67-82(2014).

    [117] Blackwell J, Kraśny M J, O'Brien A et al. Proton resonance frequency shift thermometry: a review of modern clinical practices[J]. Journal of Magnetic Resonance Imaging, 55, 389-403(2022).

    [118] Bown S G. Phototherapy of tumors[J]. World Journal of Surgery, 7, 700-709(1983).

    [119] Sugiyama K, Sakai T, Fujishima I et al. Stereotactic interstitial laser-hyperthermia using Nd-YAG laser[J]. Stereotactic and Functional Neurosurgery, 54/55, 501-505(1990).

    [120] Banerjee C, Snelling B, Berger M H et al. The role of magnetic resonance-guided laser ablation in neurooncology[J]. British Journal of Neurosurgery, 29, 192-196(2015).

    [121] Montemurro N, Anania Y, Cagnazzo F et al. Survival outcomes in patients with recurrent glioblastoma treated with laser interstitial thermal therapy (LITT): a systematic review[J]. Clinical Neurology and Neurosurgery, 195, 105942(2020).

    [122] Shimamoto S, Wu C Y, Sperling M. Laser interstitial thermal therapy in drug-resistant epilepsy[J]. Current Opinion in Neurology, 32, 237-245(2019).

    [123] Cesareo R, Manfrini S, Pasqualini V et al. Laser ablation versus radiofrequency ablation for thyroid nodules: 12-month results of a randomized trial (LARA II study)[J]. The Journal of Clinical Endocrinology & Metabolism, 106, 1692-1701(2021).

    [124] Sartori S, Di Vece F, Ermili F et al. Laser ablation of liver tumors: an ancillary technique, or an alternative to radiofrequency and microwave?[J]. World Journal of Radiology, 9, 91-96(2017).

    [125] Jiang T, Zhao Q. Lung tumors laser ablation[M]. Pacella C M, Jiang T, Mauri G. Image-guided laser ablation, 107-115(2020).

    [126] Kerbage Y, Betrouni N, Collinet P et al. Laser interstitial thermotherapy application for breast surgery: current situation and new trends[J]. The Breast, 33, 145-152(2017).

    [127] Lee T, Mendhiratta N, Sperling D et al. Focal laser ablation for localized prostate cancer: principles, clinical trials, and our initial experience[J]. Reviews in Urology, 16, 55-66(2014).

    [128] Tombesi P, Di Vece F, Sartori S. Radiofrequency, microwave, and laser ablation of liver tumors: time to move toward a tailored ablation technique?[J]. Hepatoma Research, 1, 52(2015).

    [129] Vakharia V N, Sparks R, Li K et al. Automated trajectory planning for laser interstitial thermal therapy in mesial temporal lobe epilepsy[J]. Epilepsia, 59, 814-824(2018).

    [130] Scorza D, El Hadji S, Cortés C et al. Surgical planning assistance in keyhole and percutaneous surgery: a systematic review[J]. Medical Image Analysis, 67, 101820(2021).

    [131] Pinzi M, Vakharia V N, Hwang B Y et al. Computer assisted planning for curved laser interstitial thermal therapy[J]. IEEE Transactions on Bio-Medical Engineering, 68, 2957-2964(2021).

    [132] Blauth S, Hübner F, Leithäuser C et al. Mathematical modeling and simulation of laser-induced thermotherapy for the treatment of liver tumors[C], 3-23(2022).

    [133] Fahrenholtz S J, Madankan R, Danish S et al. Theoretical model for laser ablation outcome predictions in brain: calibration and validation on clinical MR thermometry images[J]. International Journal of Hyperthermia, 34, 101-111(2018).

    [134] Liang L B, Gao T T, Ding H et al. A distribution-based method for thermal damage model analysis and optimization in brain laser interstitial thermal therapy[J]. Proceedings of SPIE, 12032, 120323S(2022).

    [135] Hori Y S, González Martínez J A, Barnett G H. Robotics in laser ablation procedures[M]. González Martínez J A, Cardinale F. Robotics in neurosurgery, 131-140(2022).

    [136] Geoghegan R, Ter Haar G, Nightingale K et al. Methods of monitoring thermal ablation of soft tissue tumors: a comprehensive review[J]. Medical Physics, 49, 769-791(2022).

    [137] Alpers J, Reimert D L, Rötzer M et al. 2. 5D thermometry maps for MRI-guided tumor ablation[M]. de Bruijne M, Cattin P C, Cotin S, et al. Medical image computing and computer-assisted intervention-MICCAI 2021. Lecture notes in computer science, 12904, 311-320(2021).

    [138] Grundfest W S, Litvack F, Forrester J S et al. Laser ablation of human atherosclerotic plaque without adjacent tissue injury[J]. Journal of the American College of Cardiology, 5, 929-933(1985).

    [139] Janis A D, Buckley L A, Gregory K W. Laser thrombolysis in an in-vitro model[J]. Proceedings of SPIE, 3907, 582-588(2000).

    [140] Papaioannou T, Levisman J, Sorokoumov O et al. Particulate debris analysis during excimer laser thrombolysis: an in-vitro study[J]. Proceedings of SPIE, 4609, 404-412(2002).

    [141] Boersma D, Smulders D L J, Bakker O J et al. Endovenous laser ablation of insufficient perforating veins: energy is key to success[J]. Vascular, 24, 144-149(2016).

    [142] Wallace T, El-Sheikha J, Nandhra S et al. Long-term outcomes of endovenous laser ablation and conventional surgery for great saphenous varicose veins[J]. British Journal of Surgery, 105, 1759-1767(2018).

    [143] Ginsburg R, Kim D S, Guthaner D et al. Salvage of an ischemic limb by laser angioplasty: description of a new technique[J]. Clinical Cardiology, 7, 54-58(1984).

    [144] Kennedy J W, Ritchie J L, Davis K B et al. Western Washington randomized trial of intracoronary streptokinase in acute myocardial infarction[J]. The New England Journal of Medicine, 309, 1477-1482(1983).

    [145] Pradhan A, Bhandari M, Snigdha B. Lasers for the treatment of coronary artery disease: an update[J]. Heart India, 8, 3(2020).

    [146] Herzog A, Bogdan S, Glikson M et al. Selective tissue ablation using laser radiation at 355 nm in lead extraction by a hybrid catheter; a preliminary report[J]. Lasers in Surgery and Medicine, 48, 281-287(2016).

    [147] Shibata N, Takagi K, Morishima I et al. The impact of the excimer laser on myocardial salvage in ST-elevation acute myocardial infarction via nuclear scintigraphy[J]. The International Journal of Cardiovascular Imaging, 36, 161-170(2020).

    [148] Herzog A, Oszkinis G, Planer D et al. Atherectomy using a solid-state laser at 355 nm wavelength[J]. Journal of Biophotonics, 10, 1271-1278(2017).

    [149] Berndt R, Rusch R, Hummitzsch L et al. Development of a new catheter prototype for laser thrombolysis under guidance of optical coherence tomography (OCT): validation of feasibility and efficacy in a preclinical model[J]. Journal of Thrombosis and Thrombolysis, 43, 352-360(2017).

    [150] Singh S, Melnik R. Thermal ablation of biological tissues in disease treatment: a review of computational models and future directions[J]. Electromagnetic Biology and Medicine, 39, 49-88(2020).

    [151] Pang S M, Kapur A, Zhou K R et al. Nanoparticle-assisted, image-guided laser interstitial thermal therapy for cancer treatment[J]. Nanomedicine and Nanobiotechnology, 14, e1826(2022).

    Tools

    Get Citation

    Copy Citation Text

    Libin Liang, Liang Li, Tingting Gao, Guangzhi Wang, Hui Ding, Mingxi Wan, Zhenxi Zhang. Research Progress of Intelligent Optic-Assisted Technology and Laser Ablation in Minimally Invasive Intervention[J]. Chinese Journal of Lasers, 2023, 50(15): 1507201

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Diagnostics and Therapy

    Received: Feb. 1, 2023

    Accepted: Apr. 13, 2023

    Published Online: Jul. 11, 2023

    The Author Email: Liang Libin (lianglibin@xjtu.edu.cn)

    DOI:10.3788/CJL230473

    Topics