Laser Technology, Volume. 45, Issue 1, 53(2021)

Development of toxic and harmful gas remote sense based on differential absorption lidar technology

LIANG Xiaofeng1、*, YANG Zehou2,3, WANG Shunyan2, CHEN Yong2, CHEN Chunli2, LI Xiaofeng2, LI Jing2, and ZHOU Dingfu2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(29)

    [1] [1] ORTOLANI C, VITALE M. The importance of local scale for assessing, monitoring and predicting of air quality in urban areas[J]. Sustainable Cities and Society, 2016, 26(1): 150-160.

    [2] [2] OTTINGER G, SARANTSCHIN E. Exposing infrastructure: How activists and experts connect ambient air monitoring and environmental health[J]. Environmental Sociology, 2017, 3(2): 155-165.

    [3] [3] TRTICA M S, RADAK B, MILOVANOVIC D, et al. Laser-based optical techniques for the detection of chemical agents*[J]. The European Physical Journal Plus, 2018, 133(7): 268.

    [4] [4] GAUDIO P. Cyber and chemical, biological, radiological, nuclear, explosives challenges[M]. Heidelberg, Germany: Springer, 2017: 155-177.

    [5] [5] LIU Q W, CHEN Y F, WANG J, et al. Design and implementation of NO2 differential absorption lidar sources[J]. Laser Technology, 2018, 42(4): 433-439 (in Chinese).

    [6] [6] ZHANG Y, YANG Z H, LI X F, et al. Development of lidar detection technology for chemical/biological agents[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030002 (in Chinese).

    [7] [7] PUSHKARSKY M, WEBBER M, PATEL C K N. High-sensitivity high-selectivity detection of CWAs and TICs using tunable laser photoacoustic spectroscopy[J]. Proceedings of the SPIE, 2005, 5732: 93-107.

    [8] [8] TONG W H, JIANG D, ZHOU D F, et al. Study on the chemical gas detecting system by CO2 DIAL[J]. Laser Technology, 2007, 31(5): 479-482 (in Chinese).

    [9] [9] FUJII T, FUKUCHI T. Laser remote sensing[M]. Boca Raton,USA: CRC Press, 2005: 141-196.

    [10] [10] LIU L L, YANG J, HUANG J, et al. Analysis of SO2 and NO2 concentration profiles in Huainan detected by a lidar[J]. Laser Technology, 2019, 43(3): 353-358 (in Chinese).

    [11] [11] VASIL’EV B I, MANNOUN O. IR differential-absorption lidars for ecological monitoring of the environment[J]. Quantum Electronics, 2006, 36(9): 801-820.

    [12] [12] HUANG B K.Research progress of laser detecting typical gases in atmosphere[J].Laser and Infrared, 2012, 42(11):1222-1225 (in Chinese).

    [13] [13] WOJTANOWSKI J, ZYGMUNT M, KOPCZYN'SKI K, et al. Optical stand-off detection of biological and chemical hazards—Prospects and concerns[C]//2018 Baltic URSI Symposium (URSI). New York,USA: IEEE,2018: 100-105.

    [14] [14] FAIST J. Quantum cascade lasers[M]. Oxford, UK: Oxford University Press, 2013:9-10.

    [15] [15] PARRACINO S, GELFUSA M, LUNGARONI M, et al. First tests of a multi-wavelength mini-DIAL system for the automatic detection of greenhouse gases[J]. Proceedings of the SPIE, 2017, 10424: 1042406.

    [16] [16] BOREYSHO A S, CHAKCHIR S Y, KONYAEV M A, et al. Optical heterodyning in differential tunable CO2 laser systems[J]. Proceedings of the SPIE, 2006, 6160: 61602R.

    [17] [17] BERNASCOLLE P F. CWA stand-off detection, a new figure-of-merit: the field surface scanning rate[J]. Proceedings of the SPIE, 2013, 8710: 871008.

    [18] [18] VEERABUTHIRAN S, RAZDAN A K. LIDAR for detection of chemical and biological warfare agents[J]. Defence Science Journal, 2011, 61(3): 241-250.

    [19] [19] VEERABUTHIRAN S, RAZDAN A K, JINDAL M K, et al. Open field testing of mid IR DIAL for remote detection of thiodiglycol vapor plumes in the topographic target configuration[J]. Sensors and Actuators, 2019, B298(1):126833.

    [20] [20] FAIST J, CAPASSO F, SIVCO D L, et al. Quantum cascade laser[J]. Science, 1994, 264(5158): 553-556.

    [21] [21] SUBRAMANIAM T K. Quantum cascade laser in atmospheric trace gas analysis[J]. Journal of Environment, 2015, 1(1): 1-4.

    [22] [22] GOYAL A K, KOTIDIS P, DEUTSCH E R, et al. Detection of chemical clouds using widely tunable quantum cascade lasers[J]. Proceedings of the SPIE, 2015, 9455: 94550L.

    [23] [23] MICHEL A P M, MILLER D J, SUN K, et al. Long-path quantum cascade laser-based sensor for methane measurements[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(11): 2373-2384.

    [24] [24] GRASSO R J. Defence and security applications of quantum cascade lasers detection of chemical clouds using widely tunable quantum cascade lasers[J]. Proceedings of the SPIE, 2016, 9933: 99330F.

    [25] [25] MA F M, CHEN Y, YANG Z H, et al. Latest development of laser Doppler wind measurement technology[J]. Laser & Optoelectronics Progress, 2019, 56(18): 180003 (in Chinese).

    [26] [26] GAO P, HU Y H, ZHAO N X, et al. Accuracy analysis of all-fiber differential absorption lidar for atmospheric component[J]. Acta Optica Sinica, 2014, 34(3): 0301003 (in Chinese).

    [27] [27] HU Y, DONG X, ZHAO N, et al. Fast retrieval of atmospheric CO2 concentration based on a near-infrared all-fiber integrated path coherent differential absorption lidar[J]. Infrared Physics & Technology, 2018, 92(1): 429-435.

    [28] [28] IMAKI M, KOJIMA R, YANAGISAWA T, et al. Preliminary study on ground based coherent differential absorption LIDAR for vertical profiling of water vapor density using 1.53μm wavelength[C]//18th Coherent Laser Radar Conference. Montgomerie, USA: Lockheed Martin Coherent Technologies, 2016:1-5.

    [29] [29] AMEDIEK A, EHRET G, FIX A, et al. CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: Measurement performance and quantification of strong point source emissions[J]. Applied Optics, 2017, 56(18): 5182-5197.

    Tools

    Get Citation

    Copy Citation Text

    LIANG Xiaofeng, YANG Zehou, WANG Shunyan, CHEN Yong, CHEN Chunli, LI Xiaofeng, LI Jing, ZHOU Dingfu. Development of toxic and harmful gas remote sense based on differential absorption lidar technology[J]. Laser Technology, 2021, 45(1): 53

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 9, 2020

    Accepted: --

    Published Online: Aug. 22, 2021

    The Author Email: LIANG Xiaofeng (151953766@qq.com)

    DOI:10.7510/jgjs.issn.1001-3806.2021.01.010

    Topics